PolySpace® Products for C 7
User’s Guide

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
PolySpace® Products for C User’s Guide
© COPYRIGHT 1999-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 6.0 (Release 2008b)
March 2009 Online Only Revised for Version 7.0 (Release 2009a)

September 2009 Online Only Revised for Version 7.1 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction to PolySpace Products

Introduction to PolySpace Products
The Value of PolySpace Verification
How PolySpace Verification Works
Product Componentscc i,
Installing PolySpace Products
Related Products 0.,

PolySpace Documentation
AboutthisGuidettt
Related Documentation

1-2
1-2
1-4
1-6
1-6

1-8
1-8
1-8

How to Use PolySpace Software

2|

PolySpace Verification and the Software Development
Cycle ...
Software Quality and Productivity
Best Practices for Verification Workflow

Implementing a Process for PolySpace Verification ...
Overview of the PolySpace Process
Defining Quality Objectivesccouiiuneenn.
Defining a Verification Process to Meet Your Objectives ..
Applying Your Verification Process to Assess Code

Qualityiiiii e e
Improving Your Verification Process

Sample Workflows for PolySpace Verification
Overview of Verification Workflows
Software Developers — Standard Development Process
Software Developers — Rigorous Development Process

2-2
2-2
2-3

2-4
2-4
2-5
2-10

2-11
2-11

2-12
2-12
2-13
2-16

iii

Quality Engineers — Code Acceptance Criteria 2-20

Quality Engineers — Certification/Qualification 2-23
Model-Based Design Users — Verifying Generated Code .. 2-25
Project Managers — Integrating PolySpace Verification

with Configuration Management Tools 2-29

Setting Up a Verification Project

3

Creating a Project, 3-2
What Is a Project? 3-2
Project Directoriesccouuiiiiiinnnn. 3-3
Opening PolySpace Launcher 3-3
Specifying Default Directory 3-6
Creating New Projects, 3-8
Opening Existing Projects, 3-10
Specifying Source Files 3-10
Specifying Include Directories 3-13
Specifying Results Directory 3-15
Specifying Analysis Optionscovviieeneeenn... 3-16
Configuring Text and XML Editors 3-17
Saving the Project 3-18

Specifying Options to Match Your Quality

Objectivesi i e e 3-19
Quality Objectives OVerviewc.oeeeeeneeennnn. 3-19
Choosing Contextual Verification Options 3-19
Choosing Strict or Permissive Verification Options 3-21
Choosing Coding Rules 3-23
Setting Up Project to Check Coding Rules 3-24
PolySpace MISRA Checker Overview 3-24
Checking Compliance with MISRA C Coding Rules 3-24
Creatinga MISRACRulesFile 3-26
Excluding Files from the MISRA C Checking 3-28
Setting Up Project for Generic Target Processors 3-30
Project Model Files 3-30
Creating Project Model Files 3-31

iv Contents

Viewing Existing Generic Targets 3-31

Defining Generic Targets 3-32
Deleting a Generic Target 3-35
Common Generic Targets, 3-35
Creating a Configuration File from a PolySpace Project

Model File i, 3-36

Setting up Project to Automatically Test Orange

Code ... o 3-38
PolySpace Automatic Orange Tester 3-38
Enabling the Automatic Orange Tester 3-38

Emulating Your Runtime Environment

4

Setting UpaTargetc.00 0., 4-2
Target/Compiler Overviewc.ccuuuuuunnn. 4-2
Specifying Target/Compilation Parameters 4-2
Predefined Target Processor Specifications (size of char, int,

float, double...) i 4-3
Generic Target Processors, 4-5
Compiling Operating System Dependent Code (OS-target

ISSUELS) v vttt ittt et e 4-5
Address Alignment 4-9
Ignoring or Replacing Keywords Before Compilation 4-10
Verifying Code That Uses KEIL or IAR Dialects 4-13
How to Gather Compilation Options Efficiently 4-20

Verifying an Application Without a “Main” 4-22
Main Generator Overviewccouiueeeennnn. 4-22
Automatically Generatinga Main 4-23
Manually Generatinga Main 4-23
Main Generator Assumptionscoiiininn... 4-24

Applying Data Ranges to External Variables and Stub

Functions (DRS) i 4-26
Overview of Data Range Specifications (DRS) 4-26
Specifying Data Ranges 4-26

File Format i e 4-27

vi

Contents

Variable Scope e
Performing Efficient Module Testing with DRS
Reducing Oranges with DRS

Preparing Source Code for Verification

5

Stubbing
Stubbing Overviewc.iiiiiinen.
Manual vs. Automatic Stubbing
Adding Precision Constraints Using Stubs
Default and Alternative Behavior for Stubbing (PURE and

WORST) .o e
Function Pointer Casescciiiiiiiinno...
Stubbing Functions with a Variable Argument Number ..
Finding Bugs in _polyspace_stdstubs.c

Preparing Code for Variables
Assigning Ranges to Variables/Assert?
Checking Properties on Global Variables at Any Point:

Global assertc.uiiiiiiiiiiiiiinnnn
Modeling Variable Values External to my Application
How are Variables Initialized?
Verifying Code with Undefined or Undeclared Variables

and Functions i

Preparing Code for Built-in Functions

Preparing Multitasking Code
PolySpace Software Assumptions
Modelling Synchronous Tasks
Modelling Interruptions and Asynchronous

Events/Tasks/Threadscc ..
Are Interruptions Maskable or Preemptive by Default? . ..
Shared Variables i,
MailboXes . .ovviii i e e
Atomicity (Can an Instruction be Interrupted by

Another) e
Priorities ... e e

5-2
5-2
5-2
5-6

5-7
5-10
5-10
5-12

5-14
5-14

5-15
5-15
5-16

5-18

Verifying “Unsupported” Code 5-36

Ignoring Assembly Code, 5-36
Dealing with Backward “goto” Statements 5-43
Types Promotion, 5-45

Running a Verification

6

Types of Verification 6-2
Running Verifications on PolySpace Server 6-3
Starting Server Verification 6-3
What Happens When You Run Verification 6-4
Running Verification Unit-by-Unit 6-5
Managing Verification Jobs Using the PolySpace Queue
Manageroiiiiii e 6-7
Monitoring Progress of Server Verification 6-8
Viewing Verification Log File on Server 6-11
Stopping Server Verification Before It Completes 6-13
Removing Verification Jobs from Server Before They
Run ... 6-14
Changing Order of Verification Jobs in Server Queue 6-15
Purging Server Queue 6-16
Changing Queue Manager Password 6-18
Sharing Server Verifications Between Users 6-18
Running Verifications on PolySpace Client 6-22
Starting Verificationon Client 6-22
What Happens When You Run Verification 6-23
Monitoring the Progress of the Verification 6-24
Stopping Client Verification Before It Completes 6-25
Running Verifications from Command Line 6-27
Launching Verificationsin Batch 6-27
Managing Verificationsin Batch 6-27

vii

viii

Contents

Troubleshooting Verification Problems

7

Verification Process Failed Errors
Messages Described in This Section
Hardware Does Not Meet Requirements
You Did Not Specify the Location of Included Files
PolySpace Software Cannot Find the Server
Limit on Assignments and Function Calls

Compilation Errors,
OVeIVIBW o ittt ettt ettt e e e
Configure a Text Editor,
Examining the Compile Log
Messages Described in This Section
Syntax Error
Undeclared Identifier,
No Such File or Directoryccuiiiiiiinn..
Errors Resulting from Unsupported Non-ANSI Keywords

Such as @interrupt,

Link Errors and Warnings
OV VIBW &ttt ettt ettt e e e
Function: Wrong Argument Type
Function: Wrong Argument Number
Variable: Wrong Type
Variable: Signed/Unsignedc.ccvveon...
Variable: Different Qualifier
Variable: Array Against Variable
Variable: Wrong Array Sizec.oeeviueennnen..
Missing Required Prototype for varargs

Stubbing Errors i
Conflicts Between Standard Library Functions and
PolySpace Stubs
_polyspace_stdstubs.c Compilation Errors
General Troubleshooting Approaches
Restart with the -Ioption
Include Files with Stubs to Replace Automatic Stubbing ..
Create a _polyspace_stdstubs.c File with Necessary
Includes i
Provide a .c file Containing a Prototype Function

7-2
7-2
7-2
7-3

7-6

Ignore _polyspace_stdstubs.c 7-27

Automatic Stub Creation Exrrors 7-28
Three Types of Exrror Messages 7-28
Function Pointer Exror 7-28
Unknown Prototype Exrror 7-29
Parameter -entry-points Exrror 7-29

Viewing Error Information When Verification Stops .. 7-31

Verification Stopped Errors 7-31
UsingtheLogFile 7-31
LogFile Example 7-31
Reducing Verification Time 7-33
Factors Impacting Verification Time 7-33
Displaying Verification Status Information 7-34
Techniques for Improving Verification Performance 7-35
Turning Antivirus Software Off 7-38
Tuning PolySpace Parameters 7-38
Subdividing Code it 7-39
Reducing Procedure Complexity 7-49
Reducing Task Complexity, 7-50
Reducing Variable Complexity 7-50
Choosing Lower Precisioncciiuunieeeoo... 7-51
Obtaining Configuration Information 7-52
Removing Preliminary Results Files 7-54

Reviewing Verification Results

8|

Before You Review PolySpace Results 8-2
Overview: Understanding PolySpace Results 8-2
Why Gray Follows Red and Green Follows Orange 8-3
The Message and What It Means 8-4
The C Explanation0 i iiiinnnn. 8-5

ix

Opening Verification Results
Downloading Results from Server to Client
Downloading Server Results to UNIX or Linux Clients ...
Downloading Results from Unit-by-Unit Verifications
Opening Verification Results
Exploring the Viewer Window
Selecting Viewer Mode,
Setting Character Encoding Preferences

Reviewing Results in Assistant Mode
What Is Assistant Mode? vvinn..
Switching to Assistant Mode
Selecting the Methodology and Criterion Level
Exploring Methodology for C
Defining a Custom Methodology
Reviewing Checks
Saving Review Commentsccuuvieeoo....

Reviewing Results in Expert Mode
What Is Expert Mode? ciiiiiiinn...
Switching to Expert Mode
Selecting a ChecktoReview
Displaying the Call Sequence for a Check
Displaying the Access Sequence for Variables
Tracking Review Progress
Making the Reviewed Column Visible
Filtering Checks i,
Typesof Filterscciiiiiii ..
Creatinga Custom Filter
Saving Review Commentsccouvieeeoo...

Importing and Exporting Review Comments
Reusing Review Comments
Exporting Review Comments to Other Verification

Results ... i
Importing Review Comments from Previous
Verificationsc.oiiiiiiiie ..

Generating Reports of Verification Results
PolySpace Report Generator Overview
Generating Verification Reports
Automatically Generating Verification Reports

Generating Excel Reports 8-47

Using PolySpace Results 8-51
Review Runtime Errors: Fix Red Errors 8-51
Red Checks Where Gray Checks were Expected 8-52
Using Range Information in the Viewer 8-54
Why Review Dead Code Checks 8-60
Reviewing Orange Checks 8-61
Integration Bug Tracking 8-62
How to Find Bugs in Unprotected Shared Data 8-63
Dataflow Verification iuu... 8-63
Dataand CodingRules 8-64
Potential Side Effect of a Red Exror 8-64
Relationships Between Variables 8-65
Two Distinct Colors in a while/for Statement 8-67

Managing Orange Checks

2

Understanding Orange Checks 9-2
What is an Orange Check? 9-2
Sources of Orange Checksccviiii... 9-6

Too Many Orange Checks? 9-9
Do I Have Too Many Orange Checks? 9-9
How to Manage Orange Checks 9-10

Reducing Orange Checks in Your Results 9-11
Overview: Reducing Orange Checks 9-11
Applying Coding Rules to Reduce Orange Checks 9-12
Considering Generated Code 9-17
Improving Verification Precision 9-17
Stubbing Parts of the Code Manually 9-24
Describing Multitasking Behavior Properly 9-27
Considering Contextual Verification 9-28

Reviewing Orange Checks 9-29
Overview: Reviewing Orange Checks 9-29
Defining Your Review Methodology 9-29

xi

xii

Performing Selective Orange Review 9-31
Importing Review Comments from Previous

Verificationsoiiiiiiiieiinniinnne.. 9-33
Performing an Exhaustive Orange Review 9-34
Automatically Testing Orange Code 9-38
Automatic Orange Tester Overview 9-38
Before Using the Automatic Orange Tester 9-41
Launching the Automatic Orange Tester 9-43
Reviewing the Test Results 9-47
Refining DataRanges 9-51
Saving and Reusing Your Configuration 9-55
Exporting Data Ranges for PolySpace Verification 9-56
Configuring Compiler Optionsccovuve.... 9-57
Technical Limitationsceiiiiinnnnn. 9-58

10

PolySpace In One Click Overview 10-2
Using PolySpace InOne Click 10-3
PolySpace In One Click Workflow 10-3
Setting the Active Project 10-3
Launching Verification i, 10-5
Using the TaskbarIcon 10-8

11

PolySpace MISRA Checker Overview 11-2
Setting Up MISRA C Checking 11-4
Checking Compliance with MISRA C Coding Rules 11-4
Creating a MISRACRulesFile 11-5
Excluding Files from the MISRA C Checking 11-7

Contents

Configuring Text and XML Editors 11-8

Running a Verification with MISRA C Checking 11-10
Starting the Verification 11-10
Examining the MISRACLogcvvvii... 11-11
Opening MISRA-CReport, 11-12

Rules Supported i, 11-14
Language Extensions0iiiiiinnnnn. 11-15
Character Setsiiiiiiiiiiiiiieennn, 11-15
Identifiers 11-15
PSS vttt 11-17
Constants . ..ot e 11-17
Declarations and Definitions 11-18
Initialization 11-20
Arithmetic Type Conversionccvvuuuuen... 11-20
Pointer Type Conversioncccuviuuunnnn. 11-24
Expressions e e 11-25
Control Statement Expressions 11-28
Control Flow i, 11-29
Switch Statements, 11-31
Functions 11-32
Pointers and Arrays i 11-33
Structures and Unionscoiiiiiiennennn... 11-33
Preprocessing Directives, 11-34
Standard Librariesc.ciiiiiineen.. 11-37
runtime Failures 11-39

Rules Partially Supported 11-40
Environment 11-40
Language Extensioncciiiinnn.. 11-41
Declarations and Definitions 11-42
Expressions e 11-43
Control Statement Expressions 11-44
Control Flow i, 11-46
Functions 11-47
Pointers and Arrays i 11-47
Preprocessing Directives, 11-48

Rules Not Checked i, 11-51
Environment 11-51
Language Extensionsciiiiiinnn.. 11-52

xiii

xiv

Documentationt 11-52

PSS v it e 11-53
Functions 11-54
Pointers and Arrays i 11-54
Structures and Unionscoiiiiiinneennn... 11-55
Standard Librariesc.ciiiiiiinnen.. 11-55

Using PolySpace Software in the Eclipse IDE

12

Verifying Code in the EclipseIDE 12-2
Creating an Eclipse Project 12-3
Setting Up PolySpace Verification with Eclipse Editor ... 12-4
Launching Verification from Eclipse Editor 12-5
Reviewing Verification Results from Eclipse Editor 12-5
Using the PolySpace Spooler 12-6

Glossary
Index

Contents

Introduction to PolySpace
Products

® “Introduction to PolySpace Products” on page 1-2

® “PolySpace Documentation” on page 1-8

Introduction to PolySpace® Products

Introduction to PolySpace Products

In this section...

“The Value of PolySpace Verification” on page 1-2
“How PolySpace Verification Works” on page 1-4
“Product Components” on page 1-6

“Installing PolySpace Products” on page 1-6

“Related Products” on page 1-6

The Value of PolySpace Verification

PolySpace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. PolySpace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

PolySpace verification can help you to:

e “Ensure Software Reliability” on page 1-2
® “Decrease Development Time” on page 1-3

* “Improve the Development Process” on page 1-4

Ensure Software Reliability

PolySpace software ensures the reliability of your C applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, PolySpace software performs an exhaustive verification of your
source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

® Never has an error

® Always has an error

® Js unreachable

Introduction to PolySpace® Products

® Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

You can also improve the quality of your code by using PolySpace verification
software to check that your code complies with MISRA C® standards.'

Decrease Development Time

PolySpace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process, but using it during early coding
phases allows you to find errors when it is less costly to fix them.

You use PolySpace software to verify C source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

¢ Green — Indicates code that never has an error.

® Red — Indicates code that always has an error.

¢ Gray — Indicates unreachable code.

¢ Orange — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time

debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-3

Introduction to PolySpace® Products

1-4

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improve the Development Process

PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.

® Quality assurance can check overall reliability of an application.

¢ Managers can monitor application reliability by generating reports from
the verification results.

How PolySpace Verification Works

PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

What is Static Verification

Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. PolySpace verification

Introduction to PolySpace® Products

provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable I’ never overflows the range of 'tab’ a traditional
approach would be to enumerate each possible value of '1’. One thousand
checks would be needed.

Using the static verification approach, the variable '1’ is modelled by its
variation domain. For instance the model of '1’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,

the information that ’1’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of 1’ is smaller than the range of ’tab’. Only one check is required

to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by PolySpace verification.

1-5

Introduction to PolySpace® Products

Product Components

The PolySpace products for verifying C code are combined with the PolySpace
products for verifying C++ code. These products are:

e “PolySpace® Client for C/C++ Software” on page 1-6
e “PolySpace® Server for C/C++ Software” on page 1-6

PolySpace Client for C/C++ Software

PolySpace® Client™ for C/C++ software is the management and visualization
tool of PolySpace products. You use it to submit jobs for execution by
PolySpace Server, and to review verification results. The PolySpace client
software includes the Viewer, DRS, MISRA C Checker, Report Generator, and
Automatic Orange Tester features.

PolySpace client software is typically installed on developer workstations that
will send verification jobs to the PolySpace server.

PolySpace Server for C/C++ Software

PolySpace® Server™ for C/C++ software is the computational engine of

PolySpace products. You use it to run jobs posted by PolySpace clients, and to
manage multiple servers and queues. The PolySpace Server software includes
the Remote Launcher, Report Generator, DRS, and HTML Generator features.

PolySpace server software is typically installed on machines dedicated to
PolySpace software that will receive verifications coming from PolySpace
clients.

Installing PolySpace Products

For information on installing and licensing PolySpace products, refer to the
PolySpace Installation Guide.

Related Products

® “PolySpace Products for Verifying C++ Code” on page 1-7
e “PolySpace Products for Verifying Ada Code” on page 1-7

Introduction to PolySpace® Products

e “PolySpace Products for Linking to Models” on page 1-7

PolySpace Products for Verifying C++ Code

For information about PolySpace products that verify C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code

For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models

For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products

PolySpace Documentation

In this section...
“About this Guide” on page 1-8

“Related Documentation” on page 1-8

About this Guide

This document describes how to use PolySpace software to verify C code, and
provides detailed procedures for common tasks. It covers both PolySpace
Client for C/C++ and PolySpace Server for C/C++ products.

This guide is intended for both novice and experienced users.

Related Documentation

In addition to this guide, the following related documents are shipped with
the software:

® PolySpace Products for C Getting Started Guide — Provides a basic
workflow and step-by-step procedures for verifying C code using PolySpace
software, to help you quickly learn how to use the software.

® PolySpace Products for C Reference — Provides detailed descriptions
of all PolySpace options, as well as all checks reported in the PolySpace
results.

® PolySpace Installation Guide — Describes how to install and license
PolySpace products.

® PolySpace Release Notes — Describes new features, bug fixes, and
upgrade issues.

You can access these guides from the Help menu, or by or clicking the Help
icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

PolySpace® Documentation

The MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to PolySpace® Products

1-10

How to Use PolySpace
Software

e “PolySpace Verification and the Software Development Cycle” on page 2-2
¢ “Implementing a Process for PolySpace Verification” on page 2-4

e “Sample Workflows for PolySpace Verification” on page 2-12

2 How fo Use PolySpace® Software

2-2

PolySpace Verification and the Software Development

Cycle

In this section...

“Software Quality and Productivity” on page 2-2

“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity

The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are always three
related variables: cost, quality, and time.

Cost Time

Quality

Changing the requirements for one of these variables always impacts the
other two.

Generally, the criticality of your application determines the balance between
these three variables — your quality model. With classical testing processes,
development teams generally try to achieve their quality model by testing
all modules in an application until each meets the required quality level.
Unfortunately, this process often ends before quality objectives are met,
because the available time or budget has been exhausted.

PolySpace verification allows a different process. PolySpace verification can
support both productivity improvement and quality improvement at the same
time, although there is always a balance between these goals.

To achieve maximum quality and productivity, however, you cannot simply
perform code verification at the end of the development process. You must

integrate verification into your development process, in a way that respects
time and cost restrictions.

PolySpace Verification and the Software Development Cycle

This chapter describes how to integrate PolySpace verification into your
software development cycle. It explains both how to use PolySpace verification
in your current development process, and how to change your process to get
more out of verification.

Best Practices for Verification Workflow

PolySpace verification can be used throughout the software development
cycle. However, to maximize both quality and productivity, the most efficient
time to use it 1s early in the development cycle.

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

.
PolySpace®

Code Code
Analysis Verification

PolySpace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is
written, to check coding rules and quickly identify any obvious defects. Once
the code 1s stable, you verify it again before module/unit testing, with more
stringent verification and review criteria.

Using verification at this stage of the development cycle improves both quality
and productivity, because it allows you to find and manage defects soon after
the code is written. This saves time because each developer is familiar with
their own code, and can quickly determine why code cannot be proven safe. In
addition, defects are cheaper to fix at this stage, since they can be addressed
before the code is integrated into a larger system.

2-3

2 How fo Use PolySpace® Software

2-4

Implementing a Process for PolySpace Verification

In this section...

“Overview of the PolySpace Process” on page 2-4
“Defining Quality Objectives” on page 2-5
“Defining a Verification Process to Meet Your Objectives” on page 2-10

“Applying Your Verification Process to Assess Code Quality” on page 2-11

“Improving Your Verification Process” on page 2-11

Overview of the PolySpace Process

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve your own quality
goals. To do this, however, you must integrate PolySpace verification into
your development process.

To successfully implement polyspace verification within your development
process, you must perform each of the following steps:

1 Define your quality objectives.
2 Define a process to match your quality objectives.
3 Apply the process to assess the quality of your code.

4 Tmprove the process.

Implementing a Process for PolySpace Verification

Defining Quality Obijectives

Before you can verify whether your code meets your quality goals, you must
define those goals. Therefore, the first step in implementing a verification
process is to define your quality objectives.

This process involves:

® “Choosing Robustness or Contextual Verification” on page 2-5

“Choosing Coding Rules” on page 2-6

® “Choosing Strict or Permissive Verification Objectives” on page 2-7

“Defining Software Quality Levels” on page 2-8

Choosing Robustness or Contextual Verification

Before using PolySpace products to verify your code, you must decide what
type of software verification you want to perform. There are two approaches
to code verification that result in slightly different workflows:

* Robustness Verification — Prove software works under all conditions.

® Contextual Verification — Prove software works under normal working
conditions.

Note Some verification processes may incorporate both robustness and
contextual verification. For example, developers may perform robustness
verification on individual files early in the development cycle, while writing
the code. Later, the team may perform contextual verification on larger
software components.

Robustness Verification. Robustness verification proves that the software
works under all conditions, including “abnormal” conditions for which it was
not designed. This can be thought of as “worst case” verification.

By default, PolySpace software assumes you want to perform robustness
verification. In a robustness verification, PolySpace software:

® Assumes function inputs are full range

2-5

2 How fo Use PolySpace® Software

¢ Initializes global variables to full range

* Automatically stubs missing functions

While this approach ensures that the software works under all conditions,
it can lead to orange checks (unproven code) in your results. You must then
manually inspect these orange checks in accordance with your software
quality objectives.

Contextual Verification. Contextual verification proves that the software
works under predefined working conditions. This limits the scope of the
verification to specific variable ranges, and verifies the code within these
ranges.

When performing contextual verification, you use PolySpace options to reduce
the number of orange checks. For example, you can:

e Use Data Range Specifications (DRS) to specify the ranges for your
variables, thereby limiting the verification to these cases. For more
information, see “Applying Data Ranges to External Variables and Stub
Functions (DRS)” on page 4-26.

® (Create a detailed main program to model the call sequence, instead of
using the default main generator. For more information, see “Verifying an
Application Without a “Main™ on page 4-22.

® Provide manual stubs that emulate the behavior of missing functions,
instead of using the default automatic stubs. For more information, see
“Stubbing” on page 5-2.

Choosing Coding Rules

Coding rules are one of the most efficient means to improve both the quality
of your code, and the quality of your verification results.

If your development team observes certain coding rules, the number of
orange checks (unproven code) in your verification results will be reduced
substantially. This means that there is less to review, and that the remaining
checks are more likely to represent actual bugs. This can make the cost of bug
detection much lower.

2-6

Implementing a Process for PolySpace Verification

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see Chapter 11, “MISRA Checker”.

Choosing Strict or Permissive Verification Objectives

While defining the quality objectives for your application, you should
determine which of these options you want to use.

Options that make verification more strict include:
e -detect-unsigned-overflow — Verification is more strict with overflowing

computations on unsigned integers.

® -no-def-init-glob — Verification treats all global variables as
non-initialized, therefore causing a red error if they are read before they
are written to.

® -wall — Specifies that all C compliance warnings are written to the log file
during compilation.

Options that make verification more permissive include:

® -allow-ptr-arith-on-struct — Enables navigation within a structure
or union from one field to another.

® -allow-negative-operand-in-shift — Verification allows a shift
operation on a negative number.

® -ignore-constant-overflow — Verification is permissive with overflowing
computations on constants.

® -allow-non-int-bitfields — Allows you to define types of bitfields other
than signed or unsigned int.

® -allow-undef-variables — Verification does not stop due to errors caused
by undefined global variables.

® -allow-unnamed-fields — Verification does not stop due to errors caused
by unnamed fields in structures.

2-7

2 How fo Use PolySpace® Software

e -dialect — Verification allows syntax associated with the IAR and Keil
dialects.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Defining Software Quality Levels

The software quality level you define determines which PolySpace options you
use, and which results you must review.

You define the quality levels appropriate for your application, from level QL-1
(lowest) to level QL-4 (highest). Each quality level consists of a set of software

quality criteria that represent a certain quality threshold. For example:

Software Quality Levels

Criteria Software Quality Levels
QL1 QL2 | QL3 | QL4

Document static information X X X X

Enforce coding rules with direct impact on X X X X

selectivity

Review all red checks X X X X

Review all gray checks X X X X

Review first criteria level for orange X X X

checks

Review second criteria level for orange X X

checks

Enforce coding rules with indirect impact X X

on selectivity

Perform dataflow analysis X X

Review third criteria level for orange X

checks

Implementing a Process for PolySpace Verification

You define the quality criteria appropriate for your application. In the
example above, the quality criteria include:

¢ Static Information — Includes information about the application
architecture, the structure of each module, and all files. This information
must be documented to ensure that your application is fully verified.

¢ Coding rules — PolySpace software can check that your code complies
with specified coding rules. The section “Applying Coding Rules to Reduce
Orange Checks” on page 9-12defines two sets of coding rules — a first set
with direct impact on the selectivity of the verification, and a second set
with indirect impact on selectivity.

* Red checks — Represent errors that occur every time the code is executed.
® Gray checks — Represent unreachable code.

®* Orange checks — Indicate unproven code, meaning a run-time error may
occur. PolySpace software allows you to define three criteria levels for
reviewing orange checks in the PolySpace Viewer. For more information,
see “Reviewing Results in Assistant Mode” on page 8-19.

¢ Dataflow analysis — Identifies errors such as non-initialized variables and
variables that are written but never read. This can include inspection of:

= Application call tree
= Read/write accesses to global variables

= Shared variables and their associated concurrent access protection

2-9

2 How fo Use PolySpace® Software

2-10

Defining a Verification Process to Meet Your
Obijectives

Once you have defined your quality objectives, you must define a process that
allows you to meet those objectives. Defining the process involves actions both
within and outside PolySpace software.

These actions include:

® Setting standards for code development, such as coding rules.

e Setting PolySpace Analysis options to match your quality objectives. See
“Creating a Project” on page 3-2.

® Setting review criteria in the PolySpace Viewer to ensure results are
reviewed consistently. See “Defining a Custom Methodology” on page 8-23.

Implementing a Process for PolySpace Verification

Applying Your Verification Process to Assess Code
Quality

Once you have defined a process that meets your quality objectives, it is up to
your development team to apply it consistently to all software components.

This process includes:

1 Launching PolySpace verification on each software component as it is
written. See “Using PolySpace In One Click” on page 10-3.

2 Reviewing verification results consistently. See “Reviewing Results in
Assistant Mode” on page 8-19.

3 Saving review comments for each component, so they are available
for future review. See “Importing Review Comments from Previous
Verifications” on page 9-33.

4 Performing additional verifications on each component, as defined by your
quality objectives.

Improving Your Verification Process

Once you review initial verification results, you can assess both the overall
quality of your code, and how well the process meets your requirements for
software quality, development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process.
These actions may include:

e Reassessing your quality objectives.

® Changing your development process to produce code that is easier to verify.

® Changing PolySpace analysis options to improve the precision of the
verification.

® Changing PolySpace options to change how verification results are reported.

For more information, see Chapter 9, “Managing Orange Checks”.

2-11

2 How fo Use PolySpace® Software

Sample Workflows for PolySpace Verification

In this section...

“Overview of Verification Workflows” on page 2-12

“Software Developers — Standard Development Process” on page 2-13
“Software Developers — Rigorous Development Process” on page 2-16
“Quality Engineers — Code Acceptance Criteria” on page 2-20

“Quality Engineers — Certification/Qualification” on page 2-23
“Model-Based Design Users — Verifying Generated Code” on page 2-25

“Project Managers — Integrating PolySpace Verification with Configuration
Management Tools” on page 2-29

Overview of Verification Workflows

PolySpace verification supports two objectives at the same time:

¢ Reducing the cost of testing and validation

¢ Improving software quality
You can use PolySpace verification in different ways depending on your
development context and quality model. The primary difference being how

you exploit verification results.

This section provides sample workflows that show how to use PolySpace
verification in a variety of development contexts.

2-12

Sample Workflows for PolySpace® Verification

Software Developers - Standard Development
Process

User Description

This workflow applies to software developers using a standard development
process. Before implementing PolySpace verification, these users fit the
following criteria:

® In Ada, no unit test tools or coverage tools are used — functional tests are
performed just after coding.

¢ In C, either no coding rules are used, or rules are not followed consistently.

Quality Obijectives

The main goal of PolySpace verification is to improve productivity while
maintaining or improving software quality. Verification helps developers find
and fix bugs more quickly than other processes. It also improves software
quality by identifying bugs that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The
goal is to deliver code of equal or better quality that other processes, while
optimizing productivity to ensure a predictable time frame with minimal
delays and costs.

Verification Workflow
This process involves file-by-file verification immediately after coding, and
again just before functional testing.

2-13

2 How fo Use PolySpace® Software

2-14

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

=
PolySpace®

Code Verification

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform robustness
verification, using default PolySpace options.

Note This means that verification uses the automatically generated
“main” function. This main will call all unused procedures and functions
with full range parameters.

2 Each developer performs file-by-file verification as they write code, and
reviews verification results.

3 The developer fixes all red errors and examines gray code identified by
the verification.

4 The developer repeats steps 2 and 3 as needed, while completing the code.
5 Once a developer considers a file complete, they perform a final verification.

6 The developer fixes any red errors, examines gray code, and performs
a selective orange review.

Sample Workflows for PolySpace® Verification

Note The goal of the selective orange review is to find as many bugs as
possible within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked
oranges. However, the verification process represents a significant
improvement from the previous process.

Costs and Benefits
When using verification to detect bugs:

¢ Red and gray checks — The number of bugs found in red and gray checks
varies, but approximately 40% of verifications reveal one or more red errors
or bugs in gray code.

® Orange checks — The time required to find one bug varies from 5 minutes
to 1 hour, and is typically around 30 minutes. This represents an average
of two minutes per orange check review, and a total of 20 orange checks per
package in Ada and 60 orange checks per file in C.

Disadvantages to this approach:
e Setup time - the time needed to set up your verification will be higher if

you do not use coding rules. You may need to make modifications to the
code before launching verification.

2-15

2 How fo Use PolySpace® Software

2-16

Software Developers - Rigorous Development
Process

User Description

This workflow applies to software developers and test engineers working
within development groups. These users are often developing software for
embedded systems, and typically use coding rules.

These users typically want to find bugs early in the development cycle using a
tool that is fast and iterative.

Quality Obijectives

The goal of PolySpace verification is to improve software quality with equal or
increased productivity.

Verification can prove the absence of runtime errors, while helping developers
find and fix any bugs more quickly than other processes.

Verification Workflow

This process involves both code analysis and code verification during the
coding phase, and thorough review of verification results before module
testing. It may also involve integration analysis before integration testing.

Sample Workflows for PolySpace® Verification

Integration Testing

f ¥

Textual _| Application | Module | %_ Hand-written|#” | Object
Requirements| | Design "] Design " Code " Code

Writing
Code

Compilation
and Linking

[] Development Artifact
@ Software Development Activity

Verification of
C and C++ Code

Workflow for Code Verification

Note Solid arrows in the figure indicate the progression of software
development activities.

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform contextual
verification. This involves:

¢ Using Data Range Specifications (DRS) to define initialization ranges
for input data. For example, if a variable “x” is read by functions in
the file, and if x can be initialized to any value between 1 and 10, this
information should be included in the DRS file.

¢ Creates a “main” program to model call sequence, instead of using the
automatically generated main.

® Sets options to check the properties of some output variables. For
example, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace
can flag instances where that range of values might be breached.

2-17

2 How fo Use PolySpace® Software

2 The project leader configures the project to check appropriate coding rules.

3 Each developer performs file-by-file verification as they write code, and
reviews both coding rule violations and verification results.

4 The developer fixes any coding rule violations, fixes all red errors,
examines gray code, and performs a selective orange review.

5 The developer repeats steps 2 and 3 as needed, while completing the code.
6 Once a developer considers a file complete, they perform a final verification.

7 The developer performs an exhaustive orange review on the remaining
orange checks.

Note The goal of the exhaustive orange review is to examine all orange
checks that were not reviewed as part of previous reviews. This is possible
when using coding rules because the total number of orange checks is
reduced, and the remaining orange checks are likely to reveal problems
with the code.

Optionally, an additional verification can be performed during the integration
phase. The purpose of this additional verification is to track integration bugs,
and review:

® Red and gray integration checks;

® The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits

With this approach, PolySpace verification typically provides the following
benefits:

e 3-5 orange and 3 gray checks per file, yielding an average of 1 bug. Often,

2 of the orange checks represent the same bug, and another represent an
anomaly.

2-18

Sample Workflows for PolySpace® Verification

e Typically, each file requires two verifications before it can be checked-in to
the configuration management system.

® The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the
data flow design, the benefits might be greater. Using data rules reduces
the potential of verification finding integration bugs.

If performing the optional verification to find integration bugs, you may see
the following results. On a typical 50,000 line project:

® A selective orange review may reveal one integration bug per hour
of code review.

e Selective orange review takes about 6 hours to complete. This is long
enough to review orange checks throughout the whole application. This
represents a step towards an exhaustive orange check review. However,
spending more time is unlikely to be efficient, and will not guarantee that
no bugs remain.

® An exhaustive orange review takes between 4 and 6 days, assuming that
50,000 lines of code contains approximately 400-800 orange checks.

2-19

2 How fo Use PolySpace® Software

2-20

Quality Engineers - Code Acceptance Criteria

User Description

This workflow applies to quality engineers who work outside of software
development groups, and are responsible for independent verification of
software quality and adherence to standards.

These users generally receive code late in the development cycle, and may
even be verifying code that is written by outside suppliers or other external
companies. They are concerned with not just detecting bugs, but measuring
quality over time, and developing processes to measure, control, and improve
product quality going forward.

Quality Obijectives

The main goal of PolySpace verification is to control and evaluate the safety
of an application.

The criteria used to evaluate code can vary widely depending on the criticality
of the application, from no red errors to exhaustive oranges review. Typically,
these criteria become increasingly stringent as a project advances from early,
to intermediate, and eventually to final delivery.

For more information on defining these criteria, see “Defining Software
Quality Levels” on page 2-8.

Verification Workflow

This process usually involves both code analysis and code verification before
validation phase, and thorough review of verification results based on defined
quality objectives.

Sample Workflows for PolySpace® Verification

Requirements Validation Testing

Original = a

Equipment PolySpace
Manufacturer
Code Verification

Functional Design Integration Testing

Sub-contractor]|
Coding Module Testing

Note Verification is often performed multiple times, as multiple versions of
the software are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality objectives for the code to be
written, including specific quality levels for each version of the code to be
delivered (first, intermediate, or final delivery) For more information, see
“Defining Quality Objectives” on page 2-5.

2 Development group writes code according to established standards.

3 Development group delivers software to the quality engineering group.

4 The project leader configures the PolySpace project to meet the defined
quality objectives, as described in “Defining a Verification Process to Meet
Your Objectives” on page 2-10.

5 Quality engineers perform verification on the code.

6 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the process.

2-21

2 How fo Use PolySpace® Software

2-22

Note The number of orange checks reviewed often depends on the version
of software being tested (first, intermediate, or final delivery). This can be
defined by quality level (see “Defining Software Quality Levels” on page
2-8).

7 Quality engineers create reports documenting the results of the verification,
and communicate those results to the supplier.

8 Quality engineers repeat steps 5—7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other
verification processes, but the cost of correcting faults is higher, because
verification takes place late in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the
cost of doing so can be high. If you want to review all orange checks at this
phase, it is important to use development and verification processes that
minimize the number of orange checks. This includes:

® Developing code using strict coding and data rules.

¢ Providing accurate manual stubs for all unresolved function calls.

¢ Using DRS to provide accurate data ranges for all input variables.

Taking these steps will minimize the number of orange checks reported by the

verification, and make it likely that any remaining orange checks represent
true issues with the software.

Sample Workflows for PolySpace® Verification

Quality Engineers - Certification/Qualification

User Description

This workflow applies to quality engineers who work with applications
requiring outside quality certification, such as IEC 61508 certification or
DO-178B qualification.

These users generally receive code late in the development cycle, and must
perform a set of activities to meet certification requirements.

Note For more information on using PolySpace products within an IEC
61508 certification environment, see the IEC Certification Kit: Verification of
C and C++ Code Using PolySpace Products.

For more information on using PolySpace products within an DO-178B
qualification environment, see the DO Qualification Kit: PolySpace
Client/Server for C/C++ Tool Qualification Plan.

Quality Obijectives

The main goal of PolySpace verification is to improve productivity by replacing
other qualification activities.

In this context, software quality is already extremely high, so verification is
not intended to improve quality. Instead, it is intended to reduce the cost of
achieving such quality.

PolySpace verification can increase productivity by replacing existing
activities, such as:

e Data and control flow verification
e Shared data conflict detection

® Robustness unit tests

These activities are often performed by hand, or with classical testing
methods, which can be time consuming. PolySpace verification can complete

2-23

2 How fo Use PolySpace® Software

the same tasks more efficiently, bringing improved productivity and reducing
the cost of the process.

Verification Workflow
The verification workflow consists of the following steps:

1 Developers write code using both coding and data rules.

2 The project leader configures the PolySpace project to meet the quality
objectives of the certified process.

3 Quality engineers perform verification at the unit test stage.

4 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the certified process.

5 Quality engineers review verification results for data and control flow
verification, and shared data detection.

6 Optionally, quality engineers perform an additional verification at the
integration test phase.

Costs and Benefits

The replacement of these activities can lead to significant cost reductions. For
example, the time spent on data and control flow verification can decrease
from 3 months to 2 weeks.

Quality is also more consistent since the process is more automated.

PolySpace tools are equally efficient on a Friday afternoon and on a Tuesday
morning.

2-24

Sample Workflows for PolySpace® Verification

Model-Based Design Users — Verifying Generated
Code

User Description

This workflow applies to users who have adopted model-based design to
generate code for embedded application software.

These users generally use PolySpace software in combination with several
other Mathworks products, including Simulink, Real-Time Workshop
Embedded Coder, and Simulink Design Verifier. In many cases, these
customers combine application components that are hand-written code with
those created using generated code.

Quality Obijectives

The goal of PolySpace verification is to improve the quality of the software by
identifying implementation issues in the code, and ensuring the code is both
semantically and logically correct.

PolySpace verification allows you to find run time errors:

¢ In hand-coded portions within the generated code
¢ In the model used for production code generation

¢ In the integration of hand-written and generated code

2-25

2 How to Use PolySpace® Software

Verification Workflow

The workflow is different for hand-written code, generated code, and mixed
code. PolySpace products can perform code verification as part of any of these

workflows. The following figure shows a suggested verification workflow for
hand-written and mixed code.

Integration Testing

Code Analy5|s Code Verification

2 y . ;
Textual _| Application | Module | % |Hand-written}®
Requirements "1 Design "] Design g Code
s, :
/ . .
s Compilation Object
Pd and Link Code
P 2BNPTEEEEE o emmeee,
» Coqe'AnaIysis“.“."Code Verification
Textual _ | Executable N MfodecI:Udsed 4| Generated |£
Requirements Specification > ‘tortode Code
Generation

Code

Modeling Generation

[] Development Artifact
(@ Software Development Activity

Verification of
C and C++ Code

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software
development activities.

2-26

Sample Workflows for PolySpace® Verification

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to meet defined quality
objectives.

2 Developers write hand-coded sections of the application.

3 Developers perform PolySpace verification on any hand-coded sections
within the generated code, and review verification results according to
the established quality objectives.

4 Developers create Simulink® model based on requirements.

5 Developers validate model to ensure it is logically correct (using tools
such as Simulink Model Advisor, and the Simulink® Verification and
Validation™ and Simulink® Design Verifier™ products).

6 Developers generate code from the model.

7 Developers perform PolySpace verification on the entire software
component, including both hand-written and generated code.

8 Developers review verification results according to the established quality
objectives.

Note The PolySpace Model Link™ SL product allows you to quickly track
any issues identified by the verification back to the appropriate block in
the Simulink model.

2-27

2 How fo Use PolySpace® Software

2-28

Costs and Benefits

PolySpace verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows
how errors in textual designs or executable models can appear in the resulting

code.

Examples of Common Run-Time Errors

Type of Error

Design or Model Errors

Code Errors

Arithmetic ¢ Incorrect Scaling ¢ Overflows/Underflows
Crrors ® Unknown calibrations ® Division by zero

® Untested data ranges e Square root of negative numbers
Memory ® Incorrect array specification in ® QOut of bound array indexes
corruption state machines e Pointer arithmetic

® Incorrect legacy code (look-up

tables)

Data ¢ Unexpected data flow ¢ Overflows/Underflows
truncation

Wrap-around

Logic errors

Unreachable states

Incorrect Transitions

Non initialized data

Dead code

Sample Workflows for PolySpace® Verification

Project Managers — Integrating PolySpace
Verification with Configuration Management Tools

User Description

This workflow applies to project managers responsible for establishing
check-in criteria for code at different development stages.

Quality Obijectives
The goal of PolySpace verification is to test that code meets established
quality criteria before being checked in at each development stage.

Verification Workflow
The verification workflow consists of the following steps:

1 Project manager defines quality objectives, including individual quality
levels for each stage of the development cycle.

2 Project leader configures a PolySpace project to meet quality objectives.

3 Developers run verification at the following stages:

¢ Daily check-in — On the files currently under development.
Compilation must complete without the permissive option.

¢ Pre-unit test check-in — On the files currently under development.

* Pre-integration test check-in — On the whole project, ensuring that
compilation can complete without the permissive option. This stage
differs from daily check-in because link errors are highlighted.

¢ Pre-build for integration test check-in — On the whole project, with
all multitasking aspects accounted for as appropriate.

® Pre-peer review check-in — On the whole project, with all
multitasking aspects accounted for as appropriate.

4 Developers review verification results for each check-in activity to ensure
the code meets the appropriate quality level. For example, the transition
criterion could be: “No bug found within 20 minutes of selective orange
review”

2-29

2 How fo Use PolySpace® Software

2-30

Setting Up a Verification
Project

e “Creating a Project” on page 3-2

® “Specifying Options to Match Your Quality Objectives” on page 3-19
e “Setting Up Project to Check Coding Rules” on page 3-24

e “Setting Up Project for Generic Target Processors” on page 3-30

e “Setting up Project to Automatically Test Orange Code” on page 3-38

3 Setting Up a Verification Project

Creating a Project

In this section...

“What Is a Project?” on page 3-2

“Project Directories” on page 3-3

“Opening PolySpace Launcher” on page 3-3
“Specifying Default Directory” on page 3-6
“Creating New Projects” on page 3-8
“Opening Existing Projects” on page 3-10
“Specifying Source Files” on page 3-10
“Specifying Include Directories” on page 3-13
“Specifying Results Directory” on page 3-15
“Specifying Analysis Options” on page 3-16
“Configuring Text and XML Editors” on page 3-17

“Saving the Project” on page 3-18

What Is a Project?

In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. You must have a project before you can
run a PolySpace verification of your source code.

A project includes:

® The location of source files and include directories
® The location of a directory for verification results

® Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Creating a Project

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target

processors.
PolySpace Project ppm For populating a project
Model with analysis options,
including generic target
processors.
Desktop dsk In earlier versions of

PolySpace software, for
running a verification
on a client computer.

Project Directories

Before you begin verifying your code with PolySpace software, you must know
the location of your source files and include files. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project
directory, and then in that directory, create separate directories for the source
files, include files, and results. For example:

polyspace _project/

® sources
® includes

® results

Opening PolySpace Launcher

You use the PolySpace Launcher to create a project and start a verification.
To open the PolySpace Launcher:

1 Double-click the PolySpace Launcher icon.

3-3

3 Setting Up a Verification Project

3-4

2 If you have both PolySpace Client for C/C++ and PolySpace Client for Ada
products on your system, the PolySpace Language Selection dialog
box will appear.

PolySpace Language Selection |

Select a language

¥ PolySpace for CIC++

" PolySpace for Ada

0K I Cancel

Select PolySpace for C/C++, then click OK.

The PolySpace Launcher window appears:

Creating a Project

Specify Specify include
source files directories
1
e
File Edit Tools Hel|s 1
jDoalh X al# 3||» B *| @ ;
4 I
L] - H |
- _l_l Name |
| Fiename | | Absolut| Path | I
Wnalysis options !
1
—General | .
—TargetiCompilation ! SpeCIfY
—Compliance with standards: ana IySIS
—PalySpace inner settings ! options
—PrecizioniEcaling :
—Muttitasking !
1
1
1
1
1
1
1
1
Include directaries [-ada-inclufle-dir] :
1
1
1
1
1
Files extensions [—extensions—for—spec—files]I :
: ! Control
Results Directory [-results-dir] 1 . .
! verification
5| '
PaE 1
1
Send to PolyEpace Server [= &Ex
—_— .
| Cormpile - 0% CDFA : 0% | Levell 0% | Level2: 0% Monitor
00:00:00 00:00:00 00:00:00 00:00:00 progress

1
|

1

1

' '
% Compile Log 1
Stats)
1

Full Log |

View log

The Launcher window has three main sections.

3-5

3 Setting Up a Verification Project

3-6

Use this For...
section...
Upper-left Specifying:

e Source files
® Include directories

¢ Results directory

Upper-right

Specifying analysis options

Lower

Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Specifying Default Directory

PolySpace software allows you to specify the default directory that appears in
directory browsers in dialog boxes. If you do not change the default directory,
the default directory is the installation directory. Changing the default
directory to the project directory makes it easier for you to locate and specify
source files and include directories in dialog boxes.

To change the default directory to the project directory:

1 Select Edit > Preferences.

The Preferences dialog box appears.

Creating a Project

2 Select the Default directory tab.

3-7

3 Setting Up a Verification Project

x
|

Remote Launcher

Toals Menu
Miscelaneous | Result directary Default directory | Editors | Generic targets
Default folder for all browsers.
{+ Always use this spedfic folder |C:\PolySpace’polyspace_project — |
{~ Use the current path as a default folder
QK Apply Cancel

3 Select Always use this specific folder if it is not already selected.
4 Enter or navigate to the project directory you want to use.

5 Click OK to apply the changes and close the dialog box.

Creating New Projects

To create a new project:

1 Select File > New Project.

The Choose the language dialog box appears:

3-8

Creating a Project

Bl Choose the language x|

(0] 4 I Cancell

2 Select C, then click OK.
The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

PolySpace Launcher for C - New_Project ;lglil

File Edit Tools Help

oD & 6l€d» Gle

New Project lI ;I : Search internal name from the selected line: I ﬁ' | %?
I = | bokiic Path : : MName Value Internal name
Analysis options
[=--General
----- Session identifier Mew_Project -prog
----- Date 03/07/2003 ~date
----- Author srunstro -author
----- Project version 1.0 -verif-version
----- Keep all preliminary results files - “eep-all-files
----- Continue with the current configuration - -continue-with-existing-host
----- Continue even on an unsupported Linux ' -allow-unsuppor tedinux
[=]-Report Generation -
-Report template name C:\PolySpace| ... |report-template
COutput format RTF v -repart-output-format
(- Target/Compilation
I Indude directories [1] [#--Compliance with standards
[#--PolySpace inner settings
[#--Predsion/Scaling
[#--Multitasking

Results Directory [-results-dir]

C:\PolySpace_Results = |

3-9

3 Setting Up a Verification Project

3-10

Opening Existing Projects
To open an existing project:

1 Select File > Open Project.

The Please select a file dialog box appears.

2 Select the project you want to open, then click OK.

The selected project opens in the Launcher.

_iBix
File Edit Tools Help
oW D % 848 b H @
New Project l| ;I : Search internal name from the selected line: I ﬁ' | I};?
I e | bk Path : : MName Value Internal name
Analysis options
[=-General
----- Session identifier Mew_Project -prog
----- Date 03/07/2009 -date
----- Author srunstro -author
----- Project version 1.0 -yerif-version
----- Keep all preliminary results files - “*eep-al-files
----- Continue with the current configuration ' -continue-with-existing-host
----- Continue even on an unsupported Linux [l -allow-unsuppor tedinusx
[=1-Report Generation -
i-Report template name C:\PolySpace| ... |report-template
utput format RTF - -report-output-format
[#-Target/Compilation
I Indude directories [1] [#--Compliance with standards
[+#--PolySpace inner settings
[#--Precision /Scaling
[#--Multitasking

Results Directory [-zesults-dir]

C:\PolySpace_Results

-

=l

Specifying Source Files

To specify the source files for your project:

1 Click the green plus sign button in the upper right of the files section of

the Launcher window.

Creating a Project

|
The Please select a file dialog box appears.

Please select a file
Loak ir: ace_project

() includes
(L0 resutts
(50 sources

I(" .z} files anly
™ Recurse subdirectories

~Source files [-sources]

~Directories to include [-1]

[~ [[~ [

Ok Cancel

2 In the Look in field, navigate to your project directory containing your
source files.

3 Select the files you want to verify, then click the green down arrow button
in the Source files section.

r

The path of each source files appear in the source files list.

3-11

3 Setting Up a Verification Project

Tip You can also drag directory and file names from an open directory
directly to the source files list or include list.

4 Click OK to apply the changes and close the dialog box.

The source files you selected appear in the files section in the upper left of
the Launcher window.

example.cfg il ;I :

File Mame Absolute Path

] example.c C:\PolySpace\polyspace_project\sources

Indude directories [-I]
0 |C:\PolySpace\polyspace_projectindudes

Results Directory [-results-dir]
C:\PolySpace\polyspace_projectiresults = |

3-12

Creating a Project

Specifying Include Directories
To specify the include directories for the project:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

|
The Please select a file dialog box appears.

HPIease select a file
Loak in: (== polyspace_project

uﬁ inchudes
Lﬂ results
L) sources

I(* . files anly
[Recurse subdirectories

—Source files [-sources]

—Directaries ta include [-1]

2| o 2

Ok | Cancel |

2 In the Look in field, navigate to your project directory.

3 Select the directory containing the include files for your project, then click
the green down arrow button in the Directories to include section.

3-13

3 Setting Up a Verification Project

|
The path for each include directory appears in the source files list.

4 Click OK to apply the changes and close the dialog box.

The include directories you selected appear in the Include directories
section on the left side of the Launcher window.

example.cfg il ;I :

File Mame Absolute Path

] example.c C:\PolySpace\polyspace_project\sources

Indude directories [-I]
0 |C:\PolySpace\polyspace_projectindudes

Results Directory [-results-dir]
C:\PolySpace\polyspace_projectiresults = |

3-14

Creating a Project

Specifying Results Directory

To specify the results directory for the project:

1 In the Results Directory section of the Launcher window, specify the
full path of the directory that will contain your verification results. For

example: C:\polyspace_project\results.

The files section of the Launcher window now looks like:

example.cfg _'.I ;I :

File Mame Absolute Path

] example.c C:\PolySpace\polyspace_project\sources

Indude directories [-I]
0 |C:\PolySpace\polyspace_projectindudes

Results Directory [-results-dir]
C:\PolySpace\polyspace_projectiresults = |

3-15

3 Setting Up a Verification Project

Specifying Analysis Options

The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software

uses during the verification process.

To specify General parameters for your project:

1 In the Analysis options section of the Launcher window, expand General.

2 The General options appear.

Search internal name from the selected line:

g

MName

Value

Internal name

Analysis options

El-General
----- Session identifier Mew_Project -prog
----- Date 08/07/2009 date
----- Author LgErname -author
----- Project version 1.0 ~yverif-version
----- Keep all preliminary results files r +eep-all-files
----- Continue with the current configuration - -continue-with-existing-host

----- Continue even on an unsupported Linux

=

-allow-unsuppor ted-inux

[=-Report Generation

=

----- Report template name

C:\PolySpace!| ...

-report-template

----- Qutput format

RTF -

-report-output-format

f-Target/Compilation

rl--Compliance with standards

Fl-PolySpace inner settings

fl--Predsion/Scaling

| g 0 e O e O A e O e

/l--Multitasking

3 Specify the appropriate general parameters for your project.

For detailed information about specific analysis options, see “Option

Descriptions”in the PolySpace Products or C Reference.

Creating a Project

Configuring Text and XML Editors

Before you running a verification you should configure your text and XML
editors in the Launcher. Configuring text and XML editors allows you to view
source files and MISRA® reports directly from the Launcher logs.

To configure your text and . XML editors:
1 Select Edit > Preferences.

The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

x

Tadls Menu I Remate | auncher
Miscellaneous I Result directory | Default directary | E drtursl Generic targets
~HML editor configuration

Specify the full path to a XML editor or use the broveze button.

¥ML Edlitar: IC:WPru:ugram FilezM=OfficelDfficel MEXCEL EXE _)l

~Text editor configuration

Specify the full psth to s text editor ar use the brovese buttan.

Text Editar: IC:IF‘rugram Filezbindows MTWACcessorieswordpad exe _)l

Specify the command line arguments for the text editar.

Arguments: I

The fallowing macros can be uzed FFILE, $LIME, FCOLUMM

Ok Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports.

4 Specify a Text editor to use to view source files from the Launcher logs.

3-17

3 Setting Up a Verification Project

5 Click OK.

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

x|
Loaok i I[ﬁ palyspace_praject ;I [ﬁ [3

ﬁ I includes
i I resutts

P e |75 sources

=
-
mpLter
My Mety
Session idertifier | Ok
File= of type: I*_ng ll Cancel

2 In Look in, select your project directory.
3 In Session identifier, enter a name for your project.

4 Click OK to save the project and close the dialog box.

3-18

Specifying Options to Match Your Quality Obijectives

Specifying Options to Match Your Quality Objectives

While creating your project, you must configure analysis options to match
your quality objectives.

This includes:

In this section...

“Quality Objectives Overview” on page 3-19
“Choosing Contextual Verification Options” on page 3-19

“Choosing Strict or Permissive Verification Options” on page 3-21

“Choosing Coding Rules” on page 3-23

Quality Objectives Overview

While creating your project, you must configure analysis options to match
your quality objectives.

This includes choosing contextual verification options, coding rules, and
options to set the strictness of the verification.

Note For information on defining the quality objectives for your project, see
“Defining Quality Objectives” on page 2-5.

Choosing Contextual Verification Options

PolySpace software performs robustness verification by default. If you want
to perform contextual verification, there are several options you can use to
provide context for data ranges, function call sequence, and stubbing.

For more information on robustness and contextual verification, see “Choosing
Robustness or Contextual Verification” on page 2-5.

To specify contextual verification for your project:

3-19

3 Setting Up a Verification Project

3-20

1 In the Analysis options section of the Launcher window, expand PolySpace
Inner Settings.

2 Expand the Generate a main and Stubbing options.

Mame Value Internal name

Analysis options

[#-General

[#-TargetfCompilation
[

+--Compliance with standards

[=-PolySpace inner settings

[#--Run a verification unit by unit r -unit-by-unit
[El-Generate a main ¥ -nain-generator
----- Write accesses to global variables |public * | ... |-main-generator-writes-variables
----- Function calls urused * | ... |-main-generator-calls
----- Startup function to call -function-called-before-main
E--Stubbing
----- Variable range setup v |-data-range-specifications
----- Stub all functions r -permissive-stubber

----- Mo automatic stubbing r no-automatic-stubbing

[#]--Assumptions

----- Automatic Orange Tester -prepare-automatic-tests

----- Run verification in 32 or 64-bit mode |auto - -machine-architecture
----- Mumber of processes for multiple CPU |4 Max-processes
----- Other options

[#-Predsion/Scaling

3 To set ranges on variables, use the following options:

e Variable range setup (-data-range-specifications) — Activates the

DRS option, allowing you to set specific data ranges for a list of global
variables.

e Write accesses to global variables

(-main-generator-writes-variables) — Specifies how the generated
main initializes global variables.

4 To specify function call sequence, use the following options:

Specifying Options to Match Your Quality Obijectives

¢ Function calls (-main-generator-calls) — Specifies how the
generated main calls functions.

e Startup function to call (-function-called-before-main) —
Specifies an initialization function called after initialization of global
variables but before the main loop.

5 To control stubbing behavior, use the following options:

¢ No automatic stubbing (-no-automatic-stubbing) — Specifies that
the software will not automatically stub functions. The software list the
functions to be stubbed and stops the verification.

¢ Stub all functions (-permissive-stubber) — Specifies that the
software stubs all functions, including those with function pointers as
return type, or those with complex function pointers as parameters.

For more information on these options, see “Option Descriptions” in the

PolySpace Products for C Reference.

Choosing Strict or Permissive Verification Options
PolySpace software provides several options that allow you to customize the
strictness of the verification. You should set these options to match the
quality objectives for your application.

To specify the strictness of your verification:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2 Expand the Strict and Permissive options.

3-21

3 Setting Up a Verification Project

3-22

Mame Value Internal name
Analysis options
[H-General
(- Target/Compilation
[=-Compliance with standards
----- Code from DOS or Windows filesystem v -dos
[+-Embedded assembler
El-Strict r -strict
LGive all warnings r -Wall
[=-Permissive r -permissive
----- Allow non ANSI/ISO C-90 Standard types of bitfields r -allove-non-nt-bitfield
----- Accept integral type conflicts r -permissive-fink
----- Continue even with undefined global variables r -gllow-undef-variables
----- Permits overflowing computations on constants r dgnore-constant-overflows
----- allow un-named Unions/Structures r -allow-unnamed-fields
----- Do not check the sign of operand in left shifts - -gllovi-negative -operand-in-shift
[#-Check MISRA-C: 2004 rules r
[+-¥eil [IAR. support default | = -dialect

[E-PolySpace inner settings

3 In addition, expand PolySpace Inner Settings > Assumptions.

4 Use the following options to make verification more strict:

¢ Detect overflows on unsigned integers
(-detect-unsigned-overflow) — Verification is more strict with
overflowing computations on unsigned integers.

®* Do not consider all global variables to be initialized
(-no-def-init-glob) — Verification treats all global variables as

non-initialized, therefore causing a red error if they are read before they

are written to.

® Give all warnings (-wall) — Specifies that all C compliance warnings

are written to the log file during compilation.

e Strict (-strict) — Specifies strict verification mode, which is

equivalent to using the -wall and -no-automatic-stubbing options

simultaneously.

Specifying Options to Match Your Quality Obijectives

5 Use the following options to make verification more permissive:

¢ Enable pointer arithmetic out of bounds of fields
(-allow-ptr-arith-on-struct) — Enables navigation within a
structure or union from one field to another.

* Do not check the sign of operand in left shifts
(-allow-negative-operand-in-shift) — Verification allows a
shift operation on a negative number.

* Permits overflowing computations on constants
(-ignore-constant-overflow) — Verification is permissive with
overflowing computations on constants.

e Allow non ANSI/ISO C-90 Standard types in bitfields
(-allow-non-int-bitfields) — Allows you to define types of bitfields
other than signed or unsigned int.

¢ Continue even with undefined global variables
(-allow-undef-variables) — Verification does not stop due
to errors caused by undefined global variables.

¢ Allow un-named Unions/Structures (-allow-unnamed-fields) —
Verification does not stop due to errors caused by unnamed fields in
structures.

¢ Kiel/TAR support (-dialect) — Verification allows syntax associated
with the TAR and Keil dialects.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Choosing Coding Rules

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see “Setting Up Project to Check Coding Rules” on
page 3-24.

3-23

3 Setting Up a Verification Project

Setting Up Project to Check Coding Rules

In this section...

“PolySpace MISRA Checker Overview” on page 3-24

“Checking Compliance with MISRA C Coding Rules” on page 3-24
“Creating a MISRA C Rules File” on page 3-26

“Excluding Files from the MISRA C Checking” on page 3-28

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.?

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

3-24

http://www.misra-c.com/

Setting Up Project to Check Coding Rules

The Compliance with standards options appear.

2 Select the Check MISRA-C:2004 rules check box.

3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and directories to ignore,

appear.
Matre Walue Internal hatne
L halysiz options
eneral
Target.l‘C-:umpilatil:un
I.J—]—Ccumpliance with standards
—Code fraomm DO or Windows filesystemn 7 -olos
F-Embedded assembler
H-Strict r strict
Permizzive I -PErtissive
f—]—Check MISRA-C: 2004 rules v
—Fules configuration . |Fmisral
—Files and directaries to ignore . |Hncludes-to-ighare
FHeillAR suppart defaut =) dislect

F-PolySpace inner settings

reu:isiu:un.l’Su:aIing

urt'rtasking

4 Specify which MISRA C rules to check and which, if any, files to exclude

from the checking.

Note For more information on using the MISRA C checker, see Chapter

11, “MISRA Checker”.

3-25

3 Setting Up a Verification Project

3-26

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

Opening a New Rules File
To open a new rules file:

1 Click the button I_l to the right of the Rules configuration option.
A window for opening or creating a MISRA C rules file appears.
2 Select File > New File.

A table of rules appears.

Setting Up Project to Check Coding Rules

Rules

Errar IWarning Off I

MISEA O rules

I—Numl::ner of rules by mode :

7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

4 Character setz

Identifiers

Types

I-' Constants

& Declarations and definitions

3 Initialization

0 Arithmetic type conversions

1 Painter type conversions

? Exressions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l E Functions

—16.1 Functionz shall nat be defined with variable numbers of arguments.

—16.2 Functions shall nat call themselves, either directly or indirectly.

—16.3 ldentifiers shall he given for all of the parameters in & function prototy

—16.4 The idertifiers used in the declaration and definition of a function shall

—16.2 Functions wvith ho parameters shall be declared with parameter type

—16.6 The number of arguments passed to a function shall match the numbe

—I16.7 & pointer parameter in a function protatype should be declared as poi

—16.5 Al exit paths from a function with non-void return type shall have an ¢

—16.9 & function identifier shall only be used with either a preceding & or

—1 G610 If & function returns error information, then that error information sha

| | | W] | | 7Y

=T Pointer and arrays

—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs

—17.2 Pointer subtraction shall only be applied to pointers that address elems

—17.3 =, == = == shal not be applied to pointer types except where they po

—17.4 Array indexing shall be the only allowed form of poirter arithmetic.

—17.5 The declaration of objects should contain no more than 2 levels of poi

—17 6 The address of an ohject with automstic storage shall not be azsigne

a'le'le'le'le'le'Baie'lele'le ' ielele'lc ie le
a'le’lc'ie’ie’le' e ie'le'leie'le'le'le le b

CIRG e e e e

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

3-27

3 Setting Up a Verification Project

3-28

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and directories to ignore
option.

2 Click the folder icon.

=]

The Select a file or directory to include dialog box appears.

Setting Up Project to Check Coding Rules

3 Select the files or directories (such as include files) you want to ignore.
4 Click OK.
The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

3-29

3 Setting Up a Verification Project

3-30

Setting Up Project for Generic Target Processors

In this section...
“Project Model Files” on page 3-30

“Creating Project Model Files” on page 3-31
“Viewing Existing Generic Targets” on page 3-31
“Defining Generic Targets” on page 3-32
“Deleting a Generic Target ” on page 3-35
“Common Generic Targets” on page 3-35

“Creating a Configuration File from a PolySpace Project Model File” on
page 3-36

Project Model Files

What Is a PolySpace Project Model File?

A PolySpace project model file is a project file that includes generic target
processors. You can use this file to share project information with your
development team.

Although you can populate a project with information, such as source files and
project options, from a project model file, you cannot run a verification with a
project model file. You must have a configuration file to run a verification.

Workflow for Using Project Model Files

A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (. ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

Setting Up Project for Generic Target Processors

3 A developer opens the .ppm file. From this file, PolySpace software

populates the project parameters and the generic targets in the preferences.

4 The developer adds source files, include directories, and a results directory
to the project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating Project Model Files

You use the PolySpace Launcher to create a PolySpace project model file.

To create a project model file:
1 Select File > New Project to create a new project.
2 Define the generic target, as described in the following sections.
3 Select File > Save project.
The Save the project as dialog box appears.
4 Select *.ppm from the Files of type menu.
5 In Session identifier, enter a name for your project model file.

6 Click OK to save the file and close the dialog box.

Viewing Existing Generic Targets
Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:
1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

3-31

3 Setting Up a Verification Project

3-32

target

Eclit

Remove

3 Click Cancel to close the dialog box.

Defining Generic Targets

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.

To configure a generic target:

To define a generic target:
1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

Setting Up Project for Generic Target Processors

SpaErc

mGSk

PO ErIC

i356

c-167

32005
sharc21x61
necyEsl

b5

b2

FfICSy

----P=T Generic----
rcpu. .. [Advanced)

3 Select mcpu... (Advanced).

The Generic target options dialog box appears.

3-33

3 Setting Up a Verification Project

3-34

Hﬁeneric target options

Enter the target name

Default result of siored right shitt |rithmetical (Default) =
ghitz 1Bhitz 32kitz Bdhits
Char v [o =V sigred
Short [) i o
It o G " e
Long i i i+ [
Lang long o o v i
Flot o r v e
Doublelong double e (8 O e
Painter o O] [o
Alignment e 8 i [
Save Carncel

4 In Enter the target name, enter a name for your target.

5 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For more information, see “GENERIC ADVANCED TARGET
OPTIONS”in the PolySpace Products for C Reference.

Setting Up Project for Generic Target Processors

6 Click Save to save the generic target options and close the dialog box.

Deleting a Generic Target
Generic targets that you create are stored as a PolySpace software preference.
Generic targets remain in your preferences until you delete them.

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:
1 Select Edit > Preferences.

The Preferences dialog box appears.
2 Select the Generic targets tab.
3 Select the target you want to remove.
4 Click Remove.

5 Click OK to apply the change and close the dialog box.

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST17 char | short|int |long |long |float | doublel long | ptr char is | endian
long double

size 8 16 16 32 32 32 32 32 16/32 | unsigned| Big

alignment| 8 16/8 | 16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | N/A N/A

3-35

3 Setting Up a Verification Project

3-36

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char | short| int | long long | float | double| long | ptr char is | endian

long double
size 8 16 16 32 32 32 64 64 16/64 | unsigned| Big
alignment| 8 8 8 8 8 8 8 8 8 N/A N/A
Hitachi H8/300, H8/300L
Hitachi | char | short| int |long |long | float | double| long | ptr char is | endian
H8/300 long double
H8/300L
size 8 16 16/32| 32 64 32 654 64 16 unsigned| Big
alignment| 8 16 16 16 16 16 16 16 16 N/A N/A
Hitachi H8/300H, H8S, H8C, H8/Tiny
Hitachi | char | short| int | long long | float | double| long | pir char is | endian
H8/300H, long double
H8S,
H8C,
H8/Tiny
size 8 16 16/ 32 64 32 64 64 32 unsigned| Big

32
alignment| 8 16 32/ 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A
16

Creating a Configuration File from a PolySpace
Project Model File

To run a verification, you must have a configuration file, not just a project
model file. However, you can create a configuration file from a project model

file.

To create a configuration file from a project model file:

Setting Up Project for Generic Target Processors

1 Open the project model file.

Note When opening files, you can select Project Model (*.ppm) files in
the File of type section to view only project model files.

Opening the project model file populates the:
® Generic targets in the preferences

® Analysis options and other project information

2 Enter additional project information, such as the results directory and
source files.

Note If you enter the results directory and source files in the project
before you save it as a PolySpace project model file, then that information
is saved in the file and appears in the project when you open the file.

3 Select File > Save project.

The Save the project as dialog box appears.
4 Enter a name for your configuration file.
5 Leave the default type as *.cfg.

6 Click OK to save the project and close the dialog box.

3-37

3 Setting Up a Verification Project

3-38

Setting up Project to Automatically Test Orange Code

In this section...

“PolySpace Automatic Orange Tester” on page 3-38

“Enabling the Automatic Orange Tester” on page 3-38

PolySpace Automatic Orange Tester

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
by automatically creating test cases for all input variables in orange code, and
then dynamically testing the code to find actual runtime errors.

For more information, see “Automatically Testing Orange Code” on page 9-38.

Enabling the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To enable the automatic orange tester:

1 In the Analysis Options window, expand the PolySpace inner settings
menu.

2 Select the Automatic Orange Tester check box.

Setting up Project to Automatically Test Orange Code

Search internal name from the selected line: ,@ | L\\\J?

MName Value Internal name

Analysis options

[+-General
[#]-Target/Compilation
[#]-Compliance with standards
[=-PolySpace inner settings

[+--Run a verification unit by unit - -unit-by-unit
[H--Generate a main W -main-generator
[#-Stubbing
[#-Assumptions
i W i

----- Run verification in 32 or 64-bit mode auto - -machine-architecture
----- Mumber of processes for multiple CPU care systems [4 ‘Max-processes

----- Other options

[-Precision/Scaling
[#-Multitasking

The -prepare-automatic-tests option is enabled.

For more information on using the Automatic Orange Tester, see
“Automatically Testing Orange Code” on page 9-38.

3-39

3 Setting Up a Verification Project

3-40

Emulating Your Runtime
Environment

e “Setting Up a Target” on page 4-2
* “Verifying an Application Without a “Main™ on page 4-22

* “Applying Data Ranges to External Variables and Stub Functions (DRS)”
on page 4-26

4 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 4-2
“Specifying Target/Compilation Parameters” on page 4-2

“Predefined Target Processor Specifications (size of char, int, float,
double...)” on page 4-3

“Generic Target Processors” on page 4-5

“Compiling Operating System Dependent Code (OS-target issues)” on page
4-5

“Address Alignment” on page 4-9

“Ignoring or Replacing Keywords Before Compilation” on page 4-10
“Verifying Code That Uses KEIL or IAR Dialects” on page 4-13
“How to Gather Compilation Options Efficiently” on page 4-20

Target/Compiler Overview

Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Specifying Target/Compilation Parameters

The Target/Compilation options in the Launcher allow you to specify the
target processor and operating system for your application.

To specify target parameters for your project:

Setting Up a Target

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

2 The Target/Compilation options appear.

Mame Walue Internal name
Analyzis options:
eneral
f—]—TargeﬂCDmpilaﬂun
—Target processor type Sparc ;I ... |Harget
—Operating system target for PolySpace stubs Solaris | HOE target
—Defined Preprocessor Macros o
—ndefined Preprocessar Macros .
—Include . Hnclude
—Commandizeript to apply to preprocessed files ... |Fpost-preprocessing-command
—Commandizcript to apply after the end of the code verification ... fpost-analysis-command
FCompliance with standards
DIySpace inner zettings
rec:isin:nn!Sc:aling
urt'rtasking

3 Specify the appropriate parameters for your target CPU and operating
system.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Predefined Target Processor Specifications (size of
char, int, float, double...)

PolySpace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics.

4-3

4 Emulating Your Runtime Environment

4-4

Note The targets Motorola ST7, ST9, Hitachi H8/300, H8/300L, Hitachi
H8/300H, H8S, H8C, H8/Tiny are described in the next section.

Target char | short| int | long| long | float doublé long | ptr| char is | Endian | ptr diff
long double type
sparc 8 16 32 | 32 64 32 64 128 32 | signed Big int, long
1386 8 16 32 | 32 64 32 64 96 32 | signed Little int, long
c-167 8 16 16 | 32 32 32 64 64 16 | signed Little int
m68k / 8 16 32 | 32 64 32 64 96 32 | signed Big int, long
ColdFire?
powerpc 8 16 32 | 32 64 32 64 128 32 | unsigned| Big int, long
tms320c3x | 32 32 32 | 32 64 32 32 40* 32 | signed Little int, long
sharc21x61 32 32 32 | 32 64 32 325 64 32 | signed Little int, long
NEC-V850 | 8 16 32 | 32 32 32 32 64 32 | signed Little int
hcos © 8 16 16 | 32 32 32 32 32 %6 unsigned| Big int
hc12 3 8 16 16 | 32 32 32 32 32 32 | signed Big int
4
mpc5xx 8 16 32 | 32 64 32 32 32 32 | signed Big int, long
(#3)
If your target processor does not match the characteristics of any processor
described above, contact The MathWorks technical support for advice.

3. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

4. All operations on long double values will be imprecise (that is, shown as orange).

5. On this target, a double may be 32 or 64 bits long. Only 32 bits double are supported.

6. Non ANSI C specified keywords and compiler implementation-dependent pragmas and

7.

interrupt facilities are not tokens into account by this support

all kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

Setting Up a Target

Note The following table describes target processors that are not fully
supported by PolySpace software, but for which you can still perform
verification. In these cases, you should select the target processor listed in
the “Nearest Processor” column. The characteristics that are not identical
between the target processor and its equivalent are highlighted in red below.
You should take these differences into account when reviewing verification
results.

Target char| short| int Iond long roaJ double long | ptr | char | ptr diff | Nearest
long double is type target
processor
tms470rlx| 8 16 32 |32 |N/A |32 |64 648 32 signed | int, long | 1386
tms320c2x | 16 16 16 |32 | N/A | 32 32 32 16 signed | int Unsupported

Generic Target Processors

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.

For more information, see “Setting Up Project for Generic Target Processors”
on page 3-30.

Compiling Operating System Dependent Code
(OS-target issues)

This section describes the options required to compile and verify code designed
to run on specific operating systems. It contains the following:

e “List of Predefined Compilation Flags” on page 4-6

o “My Target Application Runs on Linux” on page 4-8

o “My Target Application Runs on Solaris” on page 4-8

e “My Target Application Runs on Vxworks” on page 4-9

8. All operations on long double values will be imprecise (that is, shown as orange).

4-5

4 Emulating Your Runtime Environment

o “My Target Application Does Not Run on Linux, vxworks nor Solaris” on
page 4-9

List of Predefined Compilation Flags

These flags concern predefined OS-target: no-predefined-OS, linux, vxworks,
Solaris and visual (-0S-target option).

OS-target Compilation flags —include file and content
no-predefined-OS -D__STDC__
visual -D__STDC___ -include
<product_dir>/cinclude/pst-visual.h

vxworks -D__STDC__ -include

-DANSI_PROTOTYPES <product_dir>/cinclude/pst-vxworks.h

-DSTATIC=

-DCONST=const

-D__STDC__

-D__GNUC__ =2

-Dunix

-D__unix

-D__unix__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4__

-D__SVR4

Setting Up a Target

OS-target

Compilation flags

—include file and content

linux

-D__STDC__
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__ELF__

-Dunix

-D__unix
-D__unix__
-Dlinux
-D__linux
-D__linux__
-Di386

-D__ 1386
-D__i386__
-Di686

-D__ 1686

-D__ 1686
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

<product_dir>/cinclude/pst-1linux.h

Solaris

-D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GCC_NEW_VARARGS___
-Dunix

-D__unix
-D__unix__

-Dsparc

-D__sparc
-D__sparc__

-Dsun

-D__sun

-D__sun__
-D__svr4__
-D__SVR4

No -include file mentioned

4-7

4 Emulating Your Runtime Environment

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

® Setting the same -D flags manually, or

e Using the -include option on a copied and modified pst-OS-target.h file

My Target Application Runs on Linux
The minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux/next \

where the PolySpace product has been installed in the directory
/usr/local/PolySpace/ CURRENT-VERSION.

If your target application runs on Linux® but you are launching your
verification from Windows, the minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I POLYSPACE_C\Verifier\include\include-linux \
-I POLYSPACE_C\Verifier\include\include-linux\next \

where the PolySpace product has been installed in the directory POLYSPACE_C.

My Target Application Runs on Solaris
If PolySpace software runs on a Linux machine:

polyspace-c \
-0S-target Solaris \
-I /your_path_to_solaris_include

Setting Up a Target

If PolySpace runs on a Solaris™ machine:

polyspace-c \
-0S-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \
-0S-target vxworks \
-I /your_path_to/Vxworks_include_directories

My Target Application Does Not Run on Linux, vxworks nor
Solaris
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \
-0S-target no-predefined-0S \
-I /your_path_to/MyTarget_include_directories

Address Alignment

PolySpace handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard
which guarantee that:

¢ that global sizeof and offsetof fields are optimum (i.e. as short as
possible);

¢ the alignment of all addressable units is respected;

® global alignment is respected.
Consider the example:

struct foo {char a; int b;}

4 Emulating Your Runtime Environment

e Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size®

® So in the example, char a begins at offset 0 and its size is 8 bits. int b
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently, int b begins at
offset=32. The size of the struct foo before global alignment is therefore
64 bits.

® The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

® In the example, global alignment = max (alignment char a,
alignment int b) = max (8, 32) 32

® The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global alignment (32), so sizeof is not adjusted.

Ignoring or Replacing Keywords Before Compilation

You can ignore noncompliant keywords such as “far” or 0x followed by an
absolute address. The template provided in this section allows you to ignore
these keywords.

To ignore keywords:

1 Save the following template in ¢c: \PolySpace\myTpl.pl.

2 In the Target/Compilation options, select Command/script to apply to
preprocessed files.

3 Select myTpl.pl using the browse button.

For more information, see -post-preprocessing-command.

Content of the myTpl.pl file

#!/usr/bin/perl

HHRBBHAHARBRAHHARBRHH AR BB AAHAR B R AR R AR AR AR R B A AR AR BB A HH AR HHH

except in the cases of “double” and “long” on some targets.

Setting Up a Target

Post Processing template script

#

HHBBHBHHAR BB HHH AR BB H R R AR BB H AR R TR B R R R R H AR BB H
Usage from Launcher GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl

3) Windows: \Verifier\tools\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl

#

HHRBRBHHAR BB R HH R R R H R R BB H AR BB H R AR R TR B R R R R H AR HH

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ OxFE1" address constructs
s/\@\sOx[A-F0-91*//g;

Remove "@OXFE1" address constructs
s/\@Ox[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\ (\ (unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line

print $OUTFILE $_;
}

4-11

4 Emulating Your Runtime Environment

Perl Regular Expression Summary

HEBHHBHRBHHARHHBRH AR BRRA B R B R AR BRR BB AR R R R B R BB HH
Metacharacter What it matches
HEBHABHHBHHARHHBRHARHRBRRA B R B R AR R B R BB R BB R B R R R HH
Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[*a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as ["0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

Whitespace Characters

\s Whitespace character

\S Non-whitespace character
\n newline

\r return

\t tab

\f formfeed

\b backspace

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

~ Matches to beginning of line

$ Matches to end of line

Repeated Characters

x? 0 or 1 occurence of x

Xx* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively

to|be|great One of "to", "be" or "great"

Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses

o3 H I I W O O W O O W O I W I W W oI W W O W O O W O O W W W W O W W

4-12

Setting Up a Target

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses
HURHHBHHBHHHBHHBHH AR SRR BB R AR TR H RS HBHH TR H B H TR SR B H TS
Back referencing

e.g. swap first two words around on a line

red cat -> cat red

#
#
#
#
s/ (\wt) (\w+)/$2 $1/;
#

HARBRAAHARBHAHARRBHAHARBRAHAARBHAH AR BB AHAARBHAH AR HAREH

Verifying Code That Uses KEIL or IAR Dialects

Typical embedded control applications frequently read and write port data,
set timer registers and read input captures. To deal with this without using
assembly language, some microprocessor compilers have specified special

data types like sfrand sbit. Typical declarations are:

sfr AO = 0x80;
sfr A1 = 0x81;
sfr ADCUP = OxDE;
sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx
micro processor. The definition of sfr in these header files customizes the

compiler to the target processor.

When accessing a register or a port, using sfr data is then simple, but is

not part of standard ANSI C:

int status,PO;

void main (void) {

ADCUP = 0x08; /* Write data to register */

A1 = OxFF; /* Write data to Port */

status = PO; /* Read data from Port */

EI = 1; /* Set a bit (enable all interrupts) */
}

You can verify this type of code using the Kiel/TAR support option

(-dialect). This option allows the software to support the Keil or IAR C

4-13

4 Emulating Your Runtime Environment

4-14

language extensions even if some structures, keywords, and syntax are not
ANSI standard. The following tables summarize what is supported when
verifying code that is associated with the keil or iar dialects.

The following table summarizes the supported keil C language extensions:

Example: -dialect keil -sfr-types sfr=8

Type/Language | Description Example Restrictions

Type bit ® An expression to type pointers to bits and
bit gives values in bit x =0, y =1, arrays of bits are
range [0,1]. z = 2; not allowed

. assert(x == 0);

U Convert.lng'an assert(y == 1);
expression 1n.t1.1e. assert(z == 1);
type, gives 1 if it is assert(sizeof (bit)
not equal to 0, else == sizeof(int));
0. This behavior is
similar to c++ bool
type.

Type sfr e The -sfr-types option sfr and sbit types
defines unsigned sfr x = 0xf0; // are only allowed
types name and size declaration of in declarations of
in bits. variable x at external global

¢ The behavior of :?2:233 SXES4EEF; e ElolEs,

a variable follows
a variable of type

izl For this example, options
e A variable which need to be:

overlaps another one

(in term of address) -dialect keil

will be considered as -sfr-types sfr=8, \

volatile. sfr16=16

Setting Up a Target

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
Type sbit e Each read/write
access of a variable is sfr x = O0xFO;
replaced by an access sbit x1 = x ~ 1; // 1st bit of X
of the corresponding sbit x2 = OxFO "~ 2; // 2nd bit of x
sfr variable access. sbit x3 = OxF3; // 3rd bit of x
sbit y0 = t[3] ~ 1;

® Only external global
variables can be
mapped with a sbit
variable.

* Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

® g variable can also
be declared as extern
bit in an another file.

/* filel.c */
sbit x = PO ~ 1;
/* file2.c */
extern bit x;

x =1; // set the

1st bit of PO to 1

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ OxFO
int x @ OxFE ;
static const

int y @ OxA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

4-15

4 Emulating Your Runtime Environment

4-16

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions

Interrupt A warnings in the . _ Entry points and

functions log file is displayed ‘_’Old foo1l (void) interrupts are not
when an interrupt 1n1.:er‘r‘upt XX =YY taken into account
function has been using 99 { } as -entry-points.

found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void foo2 (void) _
task_ 99 _priority_
2 {1}

Keywords ignored

alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant. Defining -D _ C51__, keywords large code, data, xdata, pdata

and xhuge are ignored.

The following table summarize the iar dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language | Description Example Restrictions
Type bit ® An expression to type pointers to bits and
bit gives values in union { arrays of bits are
range [0,1]. int v; not allowed
. struct {
e Converting an int z;
expression in the }y;
type, gives 1 if it is } s;
not equal to 0, else
0 ThlS behavior is void f (VOld) {
similar to c¢++ bool bit y1 = s.y.z . 2;
type. bit x4 = x.4;
e If initialized with bit x5 = OxFO . 5;
values 0 or 1, a yl = 1;

variable of type bit
is a simple variable
(like a c++ bool).

// 2nd bit of s.y.z
// is set to 1
oF

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

® A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr

type)

Type sfr

e The -sfr-types option
defines unsigned
types name and size.

® The behavior of
a variable follows
a variable of type
integral.

e A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = Oxf0; //
declaration of
variable x at
address OxFO

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

e Individual bit
can be accessed
without using sbit/bit
variables.

e Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

int x[31], y;

x[2].2 = x[0].83 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ OxFO;
int xx @ OxFE ;
static const int y
@0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

4-17

4 Emulating Your Runtime Environment

4-18

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions

Interrupt ®* A warning is _ Entry points and

functions displayed in the 1nt(:3r‘r‘upt (1] _ \ interrupts are not
log file when an using [99] void \ | taken into account
interrupt function fool(void) { ... }; |as-entry-points.

has been found:
"interrupt handler
detected : funcname"

® A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

monitor [3] void \
foo2(void) { ... };

Keywords ignored

saddr, reentrant,

reentrant_idata, non_banked, plm, bdata,

idata, pdata, code, data, xdata, xhuge, interrupt, __interrupt

and __intrinsic

Unnamed
struct/union

® Fields of
unions/structs with
no tag and no name
can be accessed
without naming their
parent struct.

® Option
-allow-unnamed-fiel
need to be used to
allow anonymous
struct fields.

® On a conflict
between a field
of an anonymous
struct with other

identifiers:

union { int x; };

union { int y; struct { int

z; }; } @ OxFO;

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

= with a variable

name, field name
is hidden

with a field

of another
anonymous struct
at different scope,
closer scope is
chosen

with a field

of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict®
is displayed in the
log file.

no_init attribute

® a global variable

declared with this
attribute is handled

like an external
variable.

e It is handled like a

type qualifier.

no_init int x;
no_init union

{ int y; } @ OxFE;

#pragma no_init
has no effect

For example:

sfr-types sfr=8,sfr16=16

The option sfr-types defines the size of a sfr type for the keil or iar dialect.

The syntax for an sfr element in the list is type-name=typesize.

4-19

4 Emulating Your Runtime Environment

4-20

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of
16-bits. A value type-name must be given only once. 8, 16 and 32 are the
only supported values for type-size.

Note As soon as an sfr type is used in the code, you must specify its name
and size, even if it is the keyword sfr.

Note Many IAR and Keil compilers currently exist that are associated to
specific targets. It is difficult to maintain a complete list of those supported.

How to Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed to “Verifying Code That
Uses KEIL or TAR Dialects” on page 4-13). Rather than applying minor
changes to the code, create a single polyspace.h file which will contain all
target specific functions and options. The -include option can then be used to
force the inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:

® The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

® The position of the error will be identified more precisely.

® There will be no need to modify original source files.
Indirect benefits:

e The file is automatically included as the very first file in all original .c files.

® The file can contain much more powerful macro definitions than simple
-D options.

Setting Up a Target

e The file is reusable for other projects developed under the same
environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

/! Generic definitions, reusable from one project to another
#define far
#define at(x)

// A prototype may be positioned here to aid in the solution of
// a link phase conflict between

// declaration and definition. This will allow detection of the
// same error at compilation time instead of at link time.

// Leads to:

// - earlier detection

/! - precise localisation of conflict at compilation time

void f(int);

// The same also applies to variables.
extern int x;

// Standard library stubs can be avoided,
// and 0S standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
//automatic stubbing of std functions

#define _ polyspace_no_sscanf

#define _ polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

4-21

4 Emulating Your Runtime Environment

4-22

Verifying an Application Without a “Main”

In this section...

“Main Generator Overview” on page 4-22
“Automatically Generating a Main” on page 4-23

“Manually Generating a Main” on page 4-23

“Main Generator Assumptions” on page 4-24

Main Generator Overview

When your application is a function library (API) or a single module, you must
provide a main that calls each function because of the execution model used
by PolySpace. You can either manually provide a main, or have PolySpace
generate one for you automatically.

When you run a verification on PolySpace Client for C/C++ software, the main
is always generated. When you run a verification on PolySpace Server for
C/C++ software, you can choose automatically generate a main by selecting
the Generate a main (-main-generator) option.

PolySpace Client for C/C++ Software Default Behavior

The PolySpace Client for C/C++ product automatically checks whether the
code for verification contains a "main" or not.

e If a main exists in the set of files, the verification proceeds with that main.

¢ If a main does not exist, the tool generates a main. You can
specify the options: -main-generator-writes-variables and
-main-generator-calls.

PolySpace Server for C/C++ Software Default Behavior

By default, the PolySpace Server for C/C++ product stops verification if it
does not find a main. This behavior can help isolate files missing from the
verification.

Verifying an Application Without a “Main”

However, you can specify that the PolySpace Server for C/C++ product
automatically generate a main. The tool then generates a main with
the assumption of verifying a library. You can specify the options
-main-generator-writes-variables and -main-generator-calls.

Automatically Generating a Main

When you run a client verification, or a server verification using the
Generate a main (-main-generator) option, the software automatically
generates a main.

The generated main has three distinct default behaviors.

e It first initializes any variables identified by the option
-main-generator-writes-variables. The default setting for this option
is public.

e It then calls a function which could be considered an initialization function
with the option -function-called-before-main.

e [t then calls any functions identified by the option -main-generator-calls.
The default setting for this option is -main-generator-calls unused.

For more information on the main generator, see “MAIN GENERATOR
OPTIONS (-main-generator) for PolySpace Software”.

Manually Generating a Main

Manually generating a main is often preferable to an automatically generated
main, because it allows you to provide a more accurate model of the calling
sequence to be generated.

There are three steps involved in manually defining the main.

1 Identify the API functions and extract their declaration.

2 Create a main containing declarations of a volatile variable for each type
that is mentioned in the function prototypes.

3 Create a loop with a volatile end condition.

4-23

4 Emulating Your Runtime Environment

4 Inside this loop, create a switch block with a volatile condition.

5 For each API function, create a case branch that calls the function using
the volatile variable parameters you created.

Consider the following example. Suppose that the API functions are:

int funci(void *ptr, int x);
void func2(int x, int y);

You should create the following main:7

void main()
{
volatile int random; /* We need an integer variable as a function
parameter */
volatile void * volatile ptr; /* We need a void pointer as a function
parameter */
while (random) {
switch (random) {

case 1:

random = funci(ptr, random); break; /* One API function call */
default:

func2(random, random); /* Another API function call */

}

}

Main Generator Assumptions

When using the automatic main generator to verify a specific function, the
main objective is to find problems with the function itself. To do this, the
generated main makes assumptions about parameters so that you can focus
on runtime errors (red, grey and orange) related to the function itself.

The main generator makes assumptions about the arguments of called
functions to reduce the number of orange checks in the results. Therefore,
when you see an orange check in your results, it is likely due to the function
itself, not the main.

4-24

Verifying an Application Without a “Main”

However, green checks are computed with the same assumptions. Therefore,
you should be cautious of green checks involving the main itself, especially
when conducting unit-by-unit verification.

4-25

4 Emulating Your Runtime Environment

4-26

Applying Data Ranges to External Variables and Stub
Functions (DRS)

In this section...

“Overview of Data Range Specifications (DRS)” on page 4-26
“Specifying Data Ranges” on page 4-26

“File Format” on page 4-27

“Variable Scope” on page 4-29

“Performing Efficient Module Testing with DRS” on page 4-31

“Reducing Oranges with DRS” on page 4-32

Overview of Data Range Specifications (DRS)

By default, PolySpace verification assumes that all data inputs are set to their
full range. Therefore, nearly any operation on these inputs could produce an
overflow. The Data Range Specifications (DRS) module allows you to set
external constraints on global variables and stub function return values.
This can substantially reduce the number of orange checks in the verification
results.

Note You can only apply data ranges to variables with external linkages (see
“Variable Scope” on page 4-29) and stubbed functions.

Specifying Data Ranges
You activate the DRS feature using the option Variable range setup
(-data-range-specification).

To use the DRS feature:

1 Create a DRS file containing the list global variables (or functions) and
their associated data ranges, as described in “File Format” on page 4-27.

2 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

Applying Data Ranges to External Variables and Stub Functions (DRS)

3 In the Variable range setup parameter, select the DRS file that you
want to use.

File Format

The DRS file contains a list of global variables and associated data ranges.
The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable name min_value max_value <init|permanent|globalassert>
function_name.return min_value max_value permanent

variable name val_min val_max <init|permanent|globalassert>

® variable _name — The name of the global variable.
® min_value — The minimum value for the variable.

® min_value and max_value — The minimum and maximum values for the
variable. You can use the keywords "min" and "max" to denote the minimum
and maximum values of the variable type. For example, for the type long,
min and max correspond to -2731 and 2731-1 respectively.

® init — The variable is assigned to the specified range only at initialization,
and keeps it until first write.

® permanent — The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning 1s provided. Use the globalassert mode if you need a warning.

® globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

e function_name — The name of the stub function.
Tips
® You can use the keywords "min" and "max" to denote the minimum and

maximum values of the variable type. For example, for the type long, min
and max correspond to -2°31 and 2”31-1 respectively.

4-27

4 Emulating Your Runtime Environment

® You can use hexadecimal values. For example, x 0x12 0x100 init.

e Supported column separators are tab, comma, space, or semi-column.
® To insert comments, use shell style “#”.

¢ Functions must be stubbed functions (no provided body).

® permanent is the only supported mode for functions.

¢ Function names may be C or C++ functions with blanks or commas. For
example, f(int, int).

® Function names can be specified in the short form (“f") as long as no
ambiguity exists.

e The function returns either an integral (including enum and bool) or
floating point type. If the function returns an integral type and you specify
the range as a floating point [v0.x, v1.y], the software applies the integral
interval [(int)v0-1, (int)v1+1].

Example
In the following example, the global variables are named x, y, z, w, array,
and v.

x 12 100 init # x is defined between [12;100] at \

initialisation

y 0 10000 permanent # y is permanently defined between \
[0,10000] even any possible assignment.

z 0 1 globalassert # z is checked in the range [0;1] after \
each assignment

w min max permanent # w is volatile and full range on its \
declaration type

v 0 max globalassert # v is positive and checked after each \
assignment.

arrayOfInt -10 20 init # All cells are defined between [-10;20] \
at initialisation

s1.id 0 max init # s1.id is defined between [0;2"31-1] at \
initialisation.

array.c2 min 1 init # All cells array[i].c2 are defined \
between [-2731;1] at initialisation

car.speed 0 350 permanent # Speed of Struct car is permanently \

defined between 0 and 350 Km/h

4-28

Applying Data Ranges to External Variables and Stub Functions (DRS)

bar.return -100 100 permanent # function bar returns -100..100

Variable Scope

DRS supports variables with external linkages, const variables, and defined
variables. In addition, extern variables are supported with the option
-allow-undef-variables.

Static variables are not supported by DRS. The following table summarizes
possible uses:

init permanent globalassert comments
Integer Ok Ok Ok char, short, int,
enum, long and
long long

If you define

a range in
floating point
form, rounding is
applied.

Real Ok Ok Ok float, double
and long double

If you define

a range in
floating point
form, rounding is

applied.

Volatile No effect Ok Full range Only for int and
real

Structure field Ok Ok Ok Only for int

and real fields,
including arrays
or structures of
int or real fields
(see below)

4-29

4 Emulating Your Runtime Environment

init permanent globqlqsserf comments

Structure field in | Ok No effect No effect Only when

array leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for int
and real
fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer No effect No effect No effect

Union field No effect No effect No effect

Complete No effect No effect No effect

structure

Array cell No effect No effect No effect Example:
array|[0],
array[10] ...

Stubbed function | No effect Ok No effect Stubbed function

return returning

integral or
floating point

Note Every variable (or function) and associated data range will be written
in the log file at compilation time of a PolySpace verification. If PolySpace
software does not support the variable, a warning message is displayed.

Applying Data Ranges to External Variables and Stub Functions (DRS)

Note DRS can initialize arrays of structures, structures of arrays, etc., as the
long as the last field is explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the
fields. For example, "s.x 20 40 init" is valid, but "s 20 40 init" is not
(because PolySpace cannot determine what fields to initialize).

Performing Efficient Module Testing with DRS

DRS allows you to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

® Input data are consumed

® Qutput data are produced

® Constant calibrations are used during black box execution influencing
intermediate results and output data.

Using the DRS feature, you can define:

® The nominal range for input data

® The expected range for output data

® The generic specified range for calibrations

These definitions then allow PolySpace software to perform a single static
verification that performs two simultaneous tasks:

® answering questions about robustness and reliability

¢ checking that the outputs are within the expected range, which is a result

of applying black-box tests to a module

In this context, you assign DRS keywords according to the type of data
(inputs, outputs, or calibrations).

4-31

4 Emulating Your Runtime Environment

Type of Data | DRS Mode Effect on Results Why? Oranges | Selectivity
Inputs permanent Reduces the number | Input data that were | | 1
(entries) of oranges, (compared full range are set to a
with a standard smaller range.
PolySpace verification)
Outputs globalassert| Increases the number | More verification is i —
of oranges, (compared introduced into the
with a standard code, resulting in
PolySpace verification) | both more orange
checks and more
green checks.
Calibration Increases the number | Data that were i l
of oranges, (compared constant are set to
with a standard a wider range.

PolySpace verification)

4-32

Reducing Oranges with DRS

When performing robustness (worst case) verification, data inputs are always
set to their full range. Therefore, every operation on these inputs, even a
simple “one_input + 10” can produce an overflow, as the range of one_input
varies between the min and the max of the type.

If you use DRS to restrict the range of “one-input” to the real functional
constraints found in its specification, design document, or models, you can
reduce the number of orange checks reported on the variable. For example, if
you specify that “one-input” can vary between 0 and 10, PolySpace software
will definitely know that:

® one_input + 100 will never overflow

¢ the results of this operation will always be between 100 and 110

Applying Data Ranges to External Variables and Stub Functions (DRS)

This not only eliminates the local overflow orange, but also results in more

accuracy in the data. This accuracy is then propagated through the rest of
the code.

Using DRS removes the oranges located in the red circle below.

% of oranges

Oranges due fo
- complexity

Oranges due fo
variables sef fo
full range

Size (lines of code)

Why Is DRS Most Effective on Module Testing?

Removing oranges caused by full-range (worst-case) data can drastically
reduce the total number of orange checks, especially when used on
verifications of small files or modules. However, the number of orange checks
caused by code complexity is not effected by DRS. For more information on
oranges caused by code complexity, see “Subdividing Code” on page 7-39.

This section describes how DRS reduces oranges on files or modules only.

Example

The following example illustrates how DRS can reduce oranges. Suppose that
in the real world, the input “My_entry” can vary between 0 and 10.

4-33

4 Emulating Your Runtime Environment

4-34

PolySpace verification produces the following results: one with DRS and

one without.

Without DRS

With DRS — 2 Oranges Removed + Return
Statement More Accurate

My entry;
Function (void)

X ¥

x = My entry ¢ 100;
X = = 1;
#ipragma Inspecticon Folint =
return =;

0 I

™ S = ¢ B Y N o o Y S P R 0 O
=
it

int

My entry;}
int Function(veid)
{

int xi

® = My
E=x + 1;
fpragma Inspection Point X
return x|

10 1

100;

Mo =] iy W sk) [e

e With “My_entry“ being full range, the
addition “+” is orange,

¢ the result “x” is equal to all values between
[min+100 max]

® Due to previous computations, x+1 can here

overflow too, making the addition “+’orange.

e With “My_entry” being bounded to [0,10],
the addition “+” is green

e the result “x” is equal to [100,110]

¢ Due to previous computations, x+1 can NOT
overflow here, making the addition “+” green
again.

Applying Data Ranges to External Variables and Stub Functions (DRS)

Without DRS

With DRS — 2 Oranges Removed + Return

Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

H drs. Function.IPT. & E] E| [')Z|

in "drs .. ling & column &
Source code

JC. " T 3 =~ S R ul 1 = 1,
fpragma Inspection Point

ingpection point computed range:
[-2**31+101<=Function:/=2**31-1}

B drs.Function.PT.6 [|[B][X]

in "drz.c" line 8 colurmn 2
Source code

B e bt 2 Tl ek & 2 - T~ - - g
fipragma Inspection Point x

e

inspection point computed range:
{101<=Function:x<=111}

4-35

4 Emulating Your Runtime Environment

4-36

Preparing Source Code for
Verification

® “Stubbing” on page 5-2

® “Preparing Code for Variables” on page 5-14

e “Preparing Code for Built-in Functions” on page 5-19
® “Preparing Multitasking Code” on page 5-20

e “Verifying “Unsupported” Code” on page 5-36

5 Preparing Source Code for Verification

Stubbing

In this section...

“Stubbing Overview” on page 5-2
“Manual vs. Automatic Stubbing” on page 5-2
“Adding Precision Constraints Using Stubs” on page 5-6

“Default and Alternative Behavior for Stubbing (PURE and WORST)” on
page 5-7

“Function Pointer Cases” on page 5-10

“Stubbing Functions with a Variable Argument Number” on page 5-10

“Finding Bugs in _polyspace_stdstubs.c” on page 5-12

Stubbing Overview

A function stub is a small piece of code that emulates the behavior of a
missing function.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

Stubbing is useful because it allows you to verify code before all functions
have been developed.

Manual vs. Automatic Stubbing

The approach you take to stubbing can have a significant influence on the
speed and precision of your verification.

There are two types of stubs in PolySpace verification:

* Automatic stubs — When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function’s prototype (the function declaration). Automatic stubs generally
do not provide insight into the behavior of the function.

Stubbing

e Manual stubs — You create these stub functions to emulate the behavior of
the missing functions, and manually include them in the verification with
the rest of the source code.

By default, PolySpace software automatically stubs functions. However, in
some cases you may want to manually stub functions instead. For example,
when:

® Automatic stubbing does not provide an adequate representation of the
code 1t represents— both in regards to missing functions and assembly
instructions.

® The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

®* You want to improve the selectivity and speed of the verification.

®* You want to gain precision by restricting return values generated by
automatic stubs.

® You need to deal with a function that writes to global variables.

For Example:

void main(void)

{
a=1;
b=0;
a_missing_function(&a, b);
b =1 a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function was commented out,
then the division would be a green "/ ". A red "/ " could only be achieved
with a manual stub.

5-3

5 Preparing Source Code for Verification

5-4

Note Automatically generated stubs do not deinitialize variables that are
given as parameters.

Deciding which Stub Functions to Provide

In the following section, procedure_to_stub can represent either procedure or
a sequence of assembly instructions which would be automatically stubbed
in the absence of a manual stub. (Please refer to “Ignoring Assembly Code”
on page 5-36).

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

Consider procedure_to_stub, If it represents:

* A timing constraint (such as a timer set/reset, a task activation, a delay,
or a counter of ticks between two precise locations in the code) then you
can stub it to an empty action (void procedure(void)). PolySpace needs
no concept of timing since it takes into account all possible scheduling
and interleaving of concurrent execution. There is therefore no need to
stub functions that set or reset a timer. Simply declare the variable
representing time as volatile.

® An I/O access: maybe to a hardware port, a sensor, a read/write of a file,
a read of an EEPROM, or a write to a volatile variable. There is no need
to stub a write access. If you wish to do so, simply stub a write access to
an empty action (void procedure(void)). Stub read accesses to "read all
possible values (volatile)".

® A write to a global variable. In this case, you may need to consider which
procedures or functions write to it and why. Do not stub the concerned
procedure_to_stub if:

= The variable is volatile;

= The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub by hand if

Stubbing

= The variable is a regular variable read by other procedures or functions.

= A read from a global variable: If you want PolySpace to detect that it is a
shared variable, you need to stub a read access. This is easily achieved
by copying the value into a local variable.

In general, follow the Data Flow and remember that:

® PolySpace only cares about the C code which is provided;

® PolySpace need not be informed of timing constraints because all possible
sequencing is taken into account;

® You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example

The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project.) The missing function
copies the value of the src parameter to dest so there would be a division by
zero - a runtime error - at run time.

void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b=11/ a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function was commented out,
then the division would be a green "/ ". A red "/ " could only be achieved
with a manual stub.

5-5

5 Preparing Source Code for Verification

5-6

Default Stubbing Manual Stubbing Function ignored
void main(void) void a_missing_ function void a_missing function
{ (int *x, int y;) (int *x, int y;)
a=1; {*x=y;} {13
b = 0;
a_missing_function(&a, void main(void) void main(void)
b); { {
b=17/a; a=1; a=1;
// orange division b = 0; b =0;
} a_missing_function(&a, a_missing_function(&a,
b); b);
b=11/ a; b =11/ a;
// red division // green division

Due to the reliance on the software’s default stub, the assembly code is
ignored and the division " /" is green. The red division "/" could only be
achieved with a manual stub.

Summary

Stub manually to gain precision by restricting return values generated by
automatic stubs; to deal with a function which writes to global variables.

Stub automatically in the knowledge that no runtime error will be ever
introduced by automatic stubbing; to minimize preparation time.

Adding Precision Constraints Using Stubs

You can improve the selectivity of your verification by using stubs to indicate
that some variables vary within functional ranges instead of the full range of
the considered type.

You can apply this approach to:

e Parameters passed to functions.

e Variables that change from one execution to another (mostly globals).
Typically, this might include things like calibration data or mission specific

Stubbing

data. These variables might be read directly within the code, or read
through an API of functions.

If a function returns an integer, default automatic stubbing assumes that it

can take any value from the full type of an integer. This can lead to unproven
code (orange checks) in your results. You can achieve more precise results by

providing a manual stub that provides “outside” data that is representative of
the data expected when the code is implemented.

There are a number of ways to model such data ranges within the code. The

following table shows three possible approaches.

with volatile and assert

with assert and without
volatile

without assert, without
volatile, without "if"

#include <assert.h>

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);
return

#include <assert.h>

extern int other_func(void);
int stub(void)

{

int tmp;

tmp= other_func();
assert(tmp>=1 && tmp<=10);
return

}

extern int other_func(void);
int stub(void)

{

int tmp;

do {tmp= other_func();}
while (tmp<1 || tmp>10);
return tmp;

}

There is no particular advantage to any of these approaches, except that the
assertions in the first two can produce orange orange checks in your results.

Default and Alternative Behavior for Stubbing (PURE

and WORST)

External functions are assumed to have no effect (read, write) on global

variables. Any external function for which this assumption is not valid must

be explicitly stubbed.

Consider the example int f(char *);.

5-7

5 Preparing Source Code for Verification

When verifying this function, there are three options for automatic stubbing,
as shown in the following table.

Approach Worst Case Scenario in Stub

Default automatic stubbing
int f(char *x)
{
*x = rand();
return 0;

}

pragma POLYSPACE_WORST
int f(char *x)

{

strcpy(x, "the quick
brown fox, etc.");
return &(x[2]);

}

pragma POLYSPACE_PURE
int f(char *x)

{

return strlen(x);

}

If the automatic stub does not accurately model the function using any of these
approaches, you can use manual stubbing to achieve more precise results.

Stubbing Examples

The following table provides examples of the three stubbing approaches.

Initial Prototype With pragma With pragma PolySpace default
POLYSPACE PURE | POLYSPACE WORST | automatic stubbing
Do nothing
void f1(void);

5-8

Stubbing

Initial Prototype

With pragma
POLYSPACE_PURE

With pragma
POLYSPACE WORST

PolySpace default
automatic stubbing

Returns [-2731,

Returns [-2731,

Returns [-2731,

int f2 -] 2731-1] and assumes | 2/31-1]
(int u); the ability to write into
- (int *) u Assumes the ability to
int 3 write into *u to any
(int *u); depth and returns
[-2431, 2/31-1]
_ Returns an absolute | Returns AA or (int *) | Returns an absolute
int* T4 address (AA) u and assumes the address
(int u); ability to write into
(int *) u
_ Returns an absolute | Returns [-2731, Assumes the ability to
int* f5 address 2731-1] and assumes | write into *u, to any
(int *u); the ability to write into | depth and returns an
*u, to any depth absolute address
Does nothing The function pointed to by ptr will be called
void f6

(void (*ptr) (int)
param2)

void f7
(void (*ptr)(
param2)

with a full-range random value for the integer.
Rules for param2 are as above.

Unless the option —permissive-stubber, is used,
this function is not stubbed. The parameter
(int *) associated with the function pointer is
too complicated for PolySpace to stub it, and
PolySpace stops. You must stub this function

manually.

Note If (*ptr) contains a pointer as a
parameter, it won’t be stubbed automatically
and with —permissive-stubber , the function
pointer ptr is called with random as a

parameter.

5 Preparing Source Code for Verification

5-10

Function Pointer Cases

Function Prototype

Comments

int f(
void (*ptr_ok)(int, char, float),
other_typel other_paramil);

The -permissive-stubber option is not required.

int f(
void (*ptr_ok)(int *, char, float),
other_typel other_paramil);

The -permissive-stubber option is required
because of the “int *” parameter of the function
pointer passed as an argument

void _reg(int);
int _seq(void *);

unsigned char bar(void){
return 0;

}

void main(void){
unsigned char x=0;
_reg(_seq(bar));

}

3

Both functions “_reg” and “_seq” are
automatically stubbed, but the call to the “bar”
function is not exercised by the PolySpace
software.

The function that is a parameter is only called
in stubbed functions if the stubbed function
prototype contains a function pointer as
parameter.

Since here that is a “void *”, its not a function
pointer

Stubbing Functions with a Variable Argument

Number

PolySpace is capable of stubbing most vararg functions. Nevertheless,

¢ This can generate imprecision in pointer verification;

¢ [t causes a significant increase in complexity and hence in verification time.

There are three possible ways to deal with this.

¢ stub manually

Stubbing

Add a #pragma POLYSPACE_PURE "function_ 1" on every varargs
function that you know to be pure. This can reduce the complexity of
pointer verification tenfold.

For example:
#pragma POLYSPACE_PURE f

void main(void) {
int x = 0;
f(&x);
assert (x ==); // Green assertion,
//orange without use of #pragma POLYSPACE_PURE

use #define to eliminate calls to functions. This is useful with functions
like printf that generate complexity but are not useful for the verification,
since they simply display a message.

For example:

#ifdef POLYSPACE

#define example_of_function(format, args...)
#else

void example_of_function(char * format, ...)
#endif
void main(void)

{

int 1 = 3;

example_of_function("testl %d", i);

}

polyspace-c -D POLYSPACE

You can place this kind of line in any .c or .h file of the verification.

Note You should use #define only with functions that are pure.

5-11

5 Preparing Source Code for Verification

5-12

Finding Bugs in _polyspace_stdstubs.c

By performing a selective orange review, you can sometimes find bugs in the
__polyspace__stdstubs.c file. As for other oranges in the code, some are
useless, others highlight real problems. How can we isolate the useful ones?

There are a number of practical ways to make it easy for the user to detect
the useful oranges:

® Create the file using approaches with are sympathetic to PolySpace needs.
This will yield up to 90% less useless oranges. For instance,

¢ Use functions that return random values instead of local volatile variables;

e Initialize char variables with a random char instead of a volatile int in
order to reduce the number of overflow checks;

¢ Define an "APPLY_CONSTRAINT()" macro. Such a function will always
create an orange check but it will be easy to filter.

® By checking oranges manually in the __polyspace_ stdstubs.c file —
many comments are included to explain where an orange is expected and
why.

Collectively, these features turn the chore of separating out the useful orange
warnings into a fast and painless activity.

The user should start by reading IDP checks.

Example
The orange check in fgets() is one such check.

for (i=0; i < length; i++) /* write in s up to n-1 char */
s[i] = _polyspace_random_char();

S

IDP

This orange check is definitely a significant one. It means that PolySpace
could not conclude that the buffer which is given as an argument to fgets() is
always big enough to contain the specified character count. So, the severity
of the problem highlighted depends on how the function is called in the
application.

Stubbing

The check shouldn’t generally be orange unless it is highlighting a real
issue (unless fgets() is called very frequently. In that case, try using the
context-sensitivity or -inline options).

5-13

5 Preparing Source Code for Verification

Preparing Code for Variables

In this section...

“Assigning Ranges to Variables/Assert?” on page 5-14

“Checking Properties on Global Variables at Any Point: Global assert” on
page 5-15

“Modeling Variable Values External to my Application” on page 5-15
“How are Variables Initialized?” on page 5-16

“Verifying Code with Undefined or Undeclared Variables and Functions”
on page 5-18

Assigning Ranges to Variables/Assert?

Abstract

How can I use assert in PolySpace?

Explanation

Assert is a UNIX/linux/windows macro that aborts the program if the test
performed inside the assertion proves to be false.

Assert failures are real RTEs because they lead to a processor halt. Because
of this, PolySpace will produce checks for them. The behavior matches that
exhibited during execution, because all execution paths for unsatisfied
conditions are truncated (red and then gray). Thus it can be assumed
that any verification performed downstream of the assert uses value ranges
which satisfy the assert conditions.

Also refer to the use of volatile.

Solution

Assert can be used to constrain input variables to values within a particular
range, for example:

#include <stdlib.h>

5-14

Preparing Code for Variables

int random(void);

int return_betweens_bounds(int min, int max)

{
int ret; // ret is not initialized
ret = random(); // ret - [-2781, 2731-1]
assert ((min<=ret) && (ret<=max));
// assert is orange because the condition may or may not
// be fulfilled
// ret ~ [min, max] here because all execution paths that don't
// meet the condition are stopped
return ret;

}

Checking Properties on Global Variables at Any
Point: Global assert

The global assert mechanism works by inserting a check on each write access
to a global variable to ensure it is the range specified.

You enable this feature using DRS globalassert mode.

For more information, see “Applying Data Ranges to External Variables and
Stub Functions (DRS)” on page 4-26.

Modeling Variable Values External to my Application
There are three main considerations.

e Usage of volatile variable;
e Express that the variable content can change at every new read access;

* Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect
following axiom:

"if I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

5-15

5 Preparing Source Code for Verification

Thus the value of a volatile variable is "unknown". It can be any value that
can be represented by a variable of its type, and that value can change at any
time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for PolySpace.

int return_random(void)

{

volatile int random; // random ~ [-2"31, 2°31-1], although
// random is not initialized

int y;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]

random = 100;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]
return random; // random ~ [-2"31, 2731-1]

}

How are Variables Initialized?

Consider external, volatile and absolute address variable in the following
examples.

Extern

PolySpace works on the principle that a global or static extern variable could
take any value within the range of its type.

extern int x;

void f(void)

int y;

y =1 x; [/ orange because x ~ [-2"31, 2731-1]

y =1/ x; // green because x ~ [-2731 -1] U [1, 2"31-1]

Preparing Code for Variables

Refer to “Before You Review PolySpace Results” on page 8-2 for more
information on color propagation.

For extern structures containing fields of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default
behavior is that these pointers don’t point to any valid function. For results to
be meaningful here, you may well need to define these variables explicitly.

Volatile

volatile int x; // x ~ [-2"81, 2731-1], although x has not been
initialised

¢ if x is a global variable, the NIV is green

¢ if x is a local variable, the NIV is always orange

Absolute Addressing

The content of an absolute address is always considered to be potentially
uninitialized (NIV orange):

int y;
void f1(void) {
#define X (* ((int *)0x20000))

// NIV on X is orange

}

void f2(void) {
int *p = (int *)0x20000;
p = 100;
y =1 pP; // NIV on *p is orange
}

5-17

5 Preparing Source Code for Verification

Verifying Code with Undefined or Undeclared
Variables and Functions

The definition and declaration of a variable are two different but related
operations that are frequently confused.

Definition

¢ for a function: the body of the function has been written: int f(void)
{ return 0; }

¢ for a variable: a part of memory has been reserved for the variable: int

X; or extern int x=0;

When a variable is not defined, you must specify the option Continue
even with undefined global variables (-allow-undef-variable) before
you start a verification. When you specify this option, PolySpace software
considers the variable to be initialized, and to potentially have any value in
its full range (see “How are Variables Initialized?” on page 5-16).

When a function is not defined, it 1s stubbed automatically.

Declaration

¢ for a function: the prototype: int f(void);
¢ for an external variable: extern int x;
A declaration provides information about the type of the function or variable.

If the function or variable is used in a file where it has not been declared, a
compilation error will result.

5-18

Preparing Code for Built-in Functions

Preparing Code for Built-in Functions

PolySpace stubs all functions that are not defined within the verification.
Polyspace provides an accurate stub for all the functions defined in the
standard libc, taking into account functional aspect of the function.

All these functions are declared in the standard list of headers, and can be
redefined using their own definitions by invalidating the associated set of
functions:

e Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h Csetjmp’ and ’longjmp’ functions are partially implemented
— see <polyspace>/cinclude/_polyspace_ _stdstubs.c), signal.h
(‘signal' and 'raise' functions are partially implemented — see
<polyspace>/cinclude/__polyspace__stdstubs.c), stdio.h, stdarg.h,
stdlib.h, string.h,and time.h.

e Using D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions only
declared in strings.h, unistd.h, and fcntl.h.

Generally, these functions can be redefined and analyzed by PolySpace by
invalidating the associated set of functions or only the specific function using
D _ polyspace_no_<function name>. For example, If you want to redefine
the fabs () function, you need to add the D _ polyspace no_fabs directive
and add the code of your own fabs () function in a PolySpace verification.

There are five exceptions to these rules The following functions which deal

with memory allocation can not be redefined: malloc(), calloc(), realloc(),
valloc(), alloca(), built in malloc() and _built in_alloca().

5-19

5 Preparing Source Code for Verification

5-20

Preparing Multitasking Code

In this section...

“PolySpace Software Assumptions” on page 5-20
“Modelling Synchronous Tasks” on page 5-21

“Modelling Interruptions and Asynchronous Events/Tasks/Threads” on
page 5-23

“Are Interruptions Maskable or Preemptive by Default?” on page 5-25
“Shared Variables” on page 5-27

“Mailboxes” on page 5-30

“Atomicity (Can an Instruction be Interrupted by Another)” on page 5-33

“Priorities” on page 5-34

PolySpace Software Assumptions

This section describes the default behavior of the PolySpace software. If
your code does not conform to these assumptions, you must make minor
modifications to the code before starting verification.

The assumptions are as follows:

¢ The main procedure must terminate in order for entry-points (or tasks)
to start.

e All tasks or entry-points start after the end of the main without any
predefined basis regarding: the sequence, priority or preemption. If an

entry-point is seen as dead code, it is because the main contains a red error

and therefore does not terminate.
e PolySpace considers that there is no atomicity, nor timing constraints.

¢ Only entry points with void any name (void) as prototype will be
considered.

The MathWorks recommends that you read this entire section before applying
the rules described below. Some rules are mandatory, and others allow you to

gain selectivity.

Preparing Multitasking Code

Modelling Synchronous Tasks

In some circumstances, you must adapt your source code to allow synchronous
tasks to be taken into account.

Suppose that an application has the following behavior:

® Once every 10 ms: void tsk_10ms(void);
® Once every 30 ms: ...

® Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and
always return control to the calling context. For example:

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

However, if you specify each entry-point at launch using the option:
polyspace-c -entry-points tsk_10ms,tsk_30ms,tsk_50ms

then the results are NOT valid, because each task is only called once.

To address this problem, you must specify that the tasks are purely sequential
— that is, that they are functions to be called in a deterministic order. You
can do this by writing a function to call each of the tasks in the correct
sequence, and then declaring this new function as a single task entry point.
Solution 1

Write a function that calls the cyclic tasks in the right order: this is an exact
sequencer. This sequencer is then specified at launch time as a single task

entry point.

This solution:

5-21

5 Preparing Source Code for Verification

® is very precise;

® requires knowledge of the exact sequence of events.

For example, the sequencer might be:

void one_sequential C_function(void)
{

while (1) {

tsk_10ms ()

tsk_10ms ()

tsk_10ms ()

(

)

)

(

bl

bl

)

bl

tsk_30ms
tsk_10ms (
tsk_10ms (
tsk_50ms
}
}

)

and the associated launching command:
polyspace-c -entry-points one_sequential_ C_function
Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution:

® is less precise;

® is quick to code, especially for complicated scheduling

For example, the sequencer might be:

void upper_approx_C_sequencer(void)
{
volatile int random;
while (1) {
if (random) tsk_10ms();
if (random) tsk_30ms();

5-22

Preparing Multitasking Code

if (random) tsk _50ms();
if (random) tsk_100ms();

and the associated launching command:

polyspace-c -entry-points upper_approx_C_sequencer

Note If this is the only entry-point, then it can be added at the end of the
main rather than specified as a task entry point.

Modelling Interruptions and Asynchronous
Events/Tasks/Threads

You can adapt your source code to allow PolySpace software to consider both
asynchronous tasks and interruptions. For example:

void interrupt isr_1(void)

{ ...}

Without such an adaptation, interrupt service routines will appear as gray
(dead code) in the Viewer. The gray code indicates that this code is not
executed and is not taken into account, and so all interruptions and tasks are
ignored by PolySpace.

The standard execution model is such that the main is executed initially.
Only if the main terminates and returns control (i.e. if it is not an infinite
loop and has no red errors) will the entry points be started, with all potential
starting sequences being modelled automatically. There are several different
approaches which may be adopted to implement the required adaptations.
Solution 1: Where interrupts (ISRs) CANNOT preempt each other

If these 3 following conditions are fulfilled:

® the interrupt functions it_1 and it_2 (say) can never interrupt each other;

5-23

5 Preparing Source Code for Verification

® cach interrupt can be raised several times, at any time;

® they are returning functions, and not infinite loops.

Then these non preemptive interruptions may be grouped into a single
function, and that function declared as a entry point.

void it _1(void);
void it 2(void);

void all_interruptions_and_events(void)
{ while (1) {
if (random()) it _1();
if (random()) it _2();
ce)
}

The associated launching command would be:

polyspace-c -entry-points all_interruptions_and_events
Solution 2: Where interrupts CAN pre-empt each other
If two ISRs can be each be interrupted by the other, then:

® encapsulate each of them in a loop

® declare each loop as a entry point.

One way of approaching that is to replace the original file with a PolySpace
version, as 1llustrated below.

original_file.c
void it_1(void)

{
return;
}
void it_2(void)
{
return;
}

5-24

Preparing Multitasking Code

void one_task(void)

{

return;

}

polyspace.c
void polys_ it 1(void)
{

while (1)

if (random())

it 1();

}

void polys it 2(void)
{
while (1)
if (random())
it 2();
}

void polys _one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be

polyspace-c -entry-points polys_it 1,polys_it_2,polys_one_task

Are Interruptions Maskable or Preemptive by
Default?

For user interruptions, no implicit critical section is defined: they all need
to be written by hand.

5-25

5 Preparing Source Code for Verification

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

This occurs because PolySpace does not distinguish between interrupt service
routines and tasks. If you specify an interrupt to be a "-entry-point" entry
point, it will have the same priority level as the other procedures declared

as tasks ("-entry-points" option). So, because PolySpace makes an upper
approximation of all scheduling and all interleaving, in this case that
includes the possibility that the ISR might be interrupted by any
other task. There are more paths modelled than could happen during
execution, but this has no adverse effect on of the results obtained except that
more scenarios are considered than could happen during “real life” execution -
and the shared data is not seen as being protected.

To address this, the interrupt needs to be embedded in a specific procedure
that uses the same critical section as the one used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a nonmaskable interruption.

Original files

int shared_x ;

void my_main_task(void)
{

/1

MASK_IT;

shared_x = 12;
UMASK_IT;

/1

}

int shared_x ;

void interrupt my_real_it(void)

{ /* which is by specification unmaskable */
shared_x = 100;

}

Additional C files required by PolySpace:

5-26

Preparing Multitasking Code

extern void my_real it(void); // declaration required

#define MASK_IT pst_mask_it()
#define UMASK_IT pst_unmask_it()

void pst_mask_it(void); // functions used to model the critical sectit
void pst_unmask_it(void); //

void other_task (void)

{
MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launch command:

polyspace-c \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unmask_it:table"

Shared Variables

When PolySpace is launched without any options, all tasks are examined
as though concurrent and with no assumptions about priorities, sequence
order, or timing. Shared variables in this context will always be considered
unprotected, and so will all be shown as orange in the variable dictionary.

The following explicit protection mechanisms can be used to protect the
variables:

e critical section

* mutual exclusion
See details below:

e “Critical Sections” on page 5-28

5-27

5 Preparing Source Code for Verification

5-28

e “Mutual Exclusion” on page 5-29

* “Semaphores” on page 5-30

Critical Sections

This is the most common protection mechanism found in applications, and
is simple to represent in PolySpace:

¢ if one entry-point makes a call to a particular critical section, all other
entry-points will be blocked on the "critical-section-begin" function call
until the originating entry-point calls the "critical-section-end" function,

® this does not mean the code between two critical sections is atomic;

® it is a binary semaphore, so there is only one token per label (CS1 in the
example below). Unlike many implementations of semaphores, it is not
a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example.

Original Code

void proci(void)

{

MASK_IT;

x = 12; // X is protected
y = 100;

UMASK_IT;

}
void proc2(void)

{

MASK_IT;

x = 11; // X is protected
UMASK_IT;

y = 101; // Y is not protected
}

File Replacing the Original Include File

void begin_cs(void);

Preparing Multitasking Code

void end_cs(void);
#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command line to launch PolySpace

polyspace-c \
-entry-point proci,proc2 \
-critical-section-begin"begin_cs:label_1" \
-critical-section-end"end_cs:label_1"

Mutual Exclusion

Mutual exclusion between tasks or interrupts can be implemented while
preparing PolySpace for launching.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time,
you may want PolySpace to take that into account. Consider the following
example.

These entry points cannot overlap:

e t] and t3
e t2 t3 and t4

These entry-points can overlap:

e t1 and t2
e t]1 and t4

Before launching verification, the names of mutually exclusive entry-points
are placed on a single line

polyspace-c -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

5-29

5 Preparing Source Code for Verification

5-30

The file myExclusions.txt is also required in the current directory. This will
contain:

t1 t3
t2 t3 t4

Semaphores

Although it is possible to implement in ¢, it is not possible to take into account
a semaphore system call in PolySpace. Nevertheless, Critical sections may be
used to model the behavior.

Mailboxes

Suppose that an application has several tasks, some of which post messages
in a mailbox while others read them asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. It is likely that the source files will be
unavailable because the procedures are part of the OS libraries, but the
mechanism needs to be modelled if the verification is to be meaningful.

By default, PolySpace will automatically stub the missing OS send and
receive procedures. Such a stub will exhibit the following behavior:

e for send (char *buffer, int length), the content of the buffer will be written
only when the procedure is called;

e for receive (char *buffer, int *length), each element of the buffer will
contain the full range of values appropriate to that data type.

This and other mechanisms are available, with different levels of precision.

Preparing Multitasking Code

Let PolySpace stub
automatically

Provide a real mailbox mechanism

Provide an upper approximation
of the mailbox

® quick and easy to code;

* imprecise because there is no
direct connection between a
mailbox sender and receiver. That
means that even if the sender is
only submitting data within a
small range, the full data range
appropriate for the type(s) will be
for the receiver data.

® can be very costly (time
consuming) to implement;

® can introduce errors in the stubs;

® provides little additional benefit
when compared to the upper
approximation solution

This models the mechanism such
that new read from the mailbox
reads one of the recently posted
messages, but not necessarily the
last one.

® quick and easy to code;

® gives precise results;

Consider the following detailed implementation of the upper approximation

solution.
polyspace_mailboxes.h

typedef struct _r {

int length;

char content[100];

} MESSAGE;

extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive (MESSAGE *msg);

5-31

5 Preparing Source Code for Verification

polyspace_mailboxes.c

#include "polyspace_mailboxes.h"
MESSAGE mailbox;

void send(MESSAGE * msg)

{

volatile int test;

if (test) mailbox = *msg;

// a potential write to the mailbox

}
void receive (MESSAGE *msg)
{
*msg = mailbox;
}

Original code
#include "polyspace_mailboxes.h"

void t1(void)

{

MESSAGE msg_to_send;

int i;

for (1i=0; i<100; i++)

msg_to_send.content[i] = i;
msg_to_send.length = 100;
send(&msg_to_send);

}
void t2(void)

{

MESSAGE msg_to_read;

receive (&msg_to_read);

}

PolySpace then proceeds on the assumption that each new read from the
mailbox reads a message, but not necessarily the last one.

5-32

Preparing Multitasking Code

The associated launching command is

polyspace-c -entry-points t1,t2

Atomicity (Can an Instruction be Interrupted by
Another)

Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

In general terms, PolySpace does not take into account either CPU instruction
decomposition or timing considerations.

It is assumed by PolySpace that instructions are never atomic except

in the case of read and write instructions. PolySpace makes an upper
approximation of all scheduling and all interleaving. There are more
paths modelled than could happen during execution, but given that all
possible paths are always analyzed, this has no adverse effect on of the
results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example).
In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation was not
atomic it could be interrupted by another instruction in the middle of the
write operation.

e Task 1: Writes OxFF55 to x.

e Task 2: Interrupts task 1. Depending on the timing, the value of x could be
any of 0xFF00, 0x0055 or OxFF55.

PolySpace considers write/read instructions atomic, so task 2 can only read
0xFF55, even if X is not protected (refer to “Shared Variables” on page 5-27).

5-33

5 Preparing Source Code for Verification

5-34

Critical sections

In terms of critical sections, PolySpace does not model the concept of
atomicity. A critical section only guarantees that once the function associated
with -critical-section-begin has been called, any other function making use of
the same label will be blocked. All other functions can still continue to run,
even if somewhere else in another task a critical section has been started.

PolySpace’s verification of Runtime Errors (RTEs) supposes that there was no
conflict when writing the shared variables. Hence, even if a shared variable is
not protected, the RTE verification is complete and correct.

More information is available in “Critical Sections” on page 5-28.

Priorities

Priorities are not taken into account by PolySpace as such. However,

the timing implications of software execution are not relevant to the
verification performed by PolySpace, which is usually the primary reason for
implementing software task prioritization. In addition, priority inversion
issues can mean that it would be dangerous to assume that priorities

can protect shared variables. For that reason, PolySpace makes no such
assumption.

In practice, while there is no facility to specify differing task priorities, all
priorities are taken into account because the default behavior of the software
assumes that:

e all task entry points (as defined with the option -entry-points) start
potentially at the same time;

® they can interrupt each other in any order, no matter the sequence of
instructions - and so all possible interruptions will be accounted for, in
addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply
use polyspace-c -entry-points t1,t2 in the usual way.

e t1 will be able to interrupt t2 at any stage of t2, which models the behavior
at execution time;

Preparing Multitasking Code

e t2 will be able to interrupt t1 at any stage of t1, which models a behavior
which (ignoring priority inversion) would never take place during execution.
PolySpace has made an upper approximation of all scheduling and all
interleaving. There are more paths modelled than could happen during
execution, but this has no adverse effect on of the results obtained.

5-35

5 Preparing Source Code for Verification

5-36

Verifying “Unsupported” Code

In this section...

“Ignoring Assembly Code” on page 5-36
“Dealing with Backward “goto” Statements” on page 5-43
“Types Promotion” on page 5-45

Ignoring Assembly Code

You can ignore assembly code during verification using the Discard
assembly code option (-discard-asm). Using this option can deal with
many instances of assembly code within a C application, but it is not always
a valid route to take.

Ignored assembly instructions will change the behavior of the code. For
example, a write access to a shared variable can be written in assembly code.
If this write access is ignored, the verification may produce inaccurate results.

In such cases, please refer to “Stubbing” on page 5-2, which applies to
functions as well as to stubbed instructions.

PolySpace is designed for C code only. In most cases, the option -discard-asm
combined with -asm-begin and -asm-end can be used to instruct PolySpace
to discard a number of assembly code constructs:

e “Example: Ignore All Statements, the Rest of the Function Remains
Unchanged” on page 5-37

e “Example: Automatic Stubbing” on page 5-39

¢ “Examples: Empty Body” on page 5-40

e “Example: #asm and #endasm Support” on page 5-41

e “Example: What to Do If -discard-asm Fails to Parse an asm Code Section”
on page 5-42

Verifying “Unsupported” Code

Example: Ignore All Statements, the Rest of the Function
Remains Unchanged

Discarding assembly code by using the -discard-asm is an acceptable
approach where ignoring the assembly instructions will have no impact on
the remainder of the function.

Also refer to the “Manual versus automatic stubbing”

int f(void)
{

asm ("% reg val; mtmsr val;");
asm("\tmove.w #$2700,sr");
asm("\ttrap #7");

asm(" stw r11,0(r3) ");

assert (1); // is green

return 1;

}

int other_ignored6(void)

{

#define A _MACRO(bus_controller_mode) \
asm__ volatile("nop"); \

__asm__ volatile("nop"), \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \

asm__ volatile("nop"); \

)5
asm volatile("nop")
assert (1); // is green

A_MACRO(x) ;
assert (1); // is green
return 1;
}
int pragma_ignored(void)
{
#pragma asm

SRST
#pragma endasm
assert (1); // is green

}

5-37

5 Preparing Source Code for Verification

int other_ignored2(void)
{

asm "% reg val; mtmsr val;";

asm mtmsr val;

assert (1); // is green

asm ("px = pm(0,%2); \
0 = px1; \
1 px2;"

"=d" (data_16), "=d" (data_32)
"y" ((UI_32 pm *)ram_address):
"px");

assert (1); // is green

}

o°

= o°

int other_ignored1(void)
{
__asm
{MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8}
assert (1); // is green

}

int GNUC_include (void)

{

extern int _ P (char *__ pattern, int _ flags,
int (*__errfunc) (char *, int),

unsigned *_ pglob) _ asm__ ("glob64");
_asm__ ("rorw $8, %w0" \

II=r\II (_V) \

"0" ((guint16) (val)));
_asm__ ("st g14,%0" : '=m" (*(AP)));
_asm(llll \

"=p" (__t.c) \

"0" ((((union { int i, j; } *) (AP))++)->i));
assert (1); // is green
return (int) 3 __asm__ ("% reg val");

5-38

Verifying “Unsupported” Code

}

int other_ignored3(void)
{
__asm {ldab Oxffff,0;trapdis;};
__asm {ldab Oxffff,1;trapdis;};
assert (1); // is green
asm__ ("% reg val");
_asm__ ("mtmsr val");
assert (1); // is green

return 2;
}
int other_ignored4(void)
{
asm {
port_in: /* byte = port_in(port); */
mov EAX, O
mov EDX, 4[ESP]
in AL, DX
ret

port_out: /* port_out(byte,port); */
mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret }
assert (1); // is green

}

Example: Automatic Stubbing

When a function is preceded by asm, it will be stubbed automatically, even if a
body is defined.

asm int m(int tt);

You must use the -discard-asm option.

5-39

5 Preparing Source Code for Verification

Examples: Empty Body

Using the option #pragma inline_asm(list of functions) has the same
effect.

You must use the -discard-asm option.

pragma inline_asm(ex1, ex2) // the 2 functions ex1 and ex2 will be
//stubbed, even if their body is defined

int ex1(void)
{
% reg val;
mtmsr val;
return 3; // is ignored

b

int ex2(void)
{
% reg val;
mtmsr val;
assert (1); // is ignored
return 3;

b

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)

{
% reg val;
mtmsr val; // is ignored
return 3;
};
asm int h(int tt) // using the qualifier asm is equivalent
// to #pragma inline_asm
{
% reg val; // is 1ignored
mtmsr val; // is ignored

5-40

Verifying “Unsupported” Code

return 3; // is ignored
b
void f(void) {
int x;
x = ex1(); // ex1 is stubbed : x is full-range
X = ex2(); // x is full-range
x = ex3(); // x is full-range
x = h(3); // x is full-range

}

Also refer to “Stubbing” on page 5-2.

Example: #asm and #endasm Support

Using #asm and #endasm allows fragments of (typically) assembly code to
be disregarded by PolySpace, regardless of whether or not you use the
-discard-asm.

Consider the following example.

void test(void)

{
#asm
mov _as:pe, reg
jre _nop
#endasm
int r;
r=0;
r++;
}
Explanation

By default, the usage of #asm and #endasm requires the usage of the
-asm-begin and -asm-end options in the following way. The syntax to use this
facility when launching PolySpace in batch mode is:

polyspace-c -asm-begin asm -asm-end endasm

5-41

5 Preparing Source Code for Verification

5-42

Example: What to Do If -discard-asm Fails to Parse an asm
Code Section
Occasionally, the -discard-asm option does not deal with a particular

assembly code construction, particularly when the code fragment is compiler
specific

Note You could also consider using the -asm-begin and -asm-end options
instead of the following approach).

Consider this example.
int x=12;

1
2
3 void f(void)
4 {

5 #pragma will_be_ignored
6 x =0;

7 x= 1/x; // no color is displayed

8 // not even C code

9 #pragma was_ignored

10 x++;

11 x=15;

12 }

13

14 void main (void)

15 {

16 int y;

17 f();

18 y =1/x + 1/ (x-15); // Red zZDV, x is equal to 15
19

20 }

As shown in this example, any text or code placed between the two #pragma
statements is ignored by the verification. This allows any unsupported
construction to be ignored without changing the meaning of the original
code. The options to enable this feature are accessible through the Graphical
Interface PolySpace Launcher or in batch mode:

Verifying “Unsupported” Code

polyspace-c -asm-begin will be_ignored -asm-end was_ignored

Dealing with Backward “goto” Statements

PolySpace 1s not designed to support backward “goto” statements. However,
macros provide a solution in most cases. In general, verifications that includes
backward “goto” statements stop at an early stage, and a message appears
saying that backward “goto” statements are not supported.

Macros provided with the PolySpace software can work around this limitation
as long as the “goto” labels and jump instructions are in the same
code block (and in the same scope).

To insert these macros into the code:

1 Edit the C file containing the “goto” statements;

2 Add #include pstgoto.h" at the beginning of the file (located in
<PolySpacelInstallDir>/cinclude).

3 Go to the beginning of the block containing the “goto” statements.

4 Insert the USE_1_GOTO(<tag>) macro call after the variable declarations
(local to the block).

5 Insert the EXIT_1_GOTO(<tag>) macro call before the end of this same
block (take care with the closing bracket "}").

6 Replace "goto <tag>" with "GOTO(<tag>)".

For example, the following code would cause a verification to
terminate:

{
/* local variable declarations */
int x;

/* Instructions */
label1l:

goto labeltl

5-43

5 Preparing Source Code for Verification

}

You could address this problem as follows:

/* the pstgoto.h file is provided by PolySpace and its path */

{
/* local variable declarations */
int x;

USE_1_GOTO(labell);
/* Instructions */

label1l:
GOTO(labelt);

EXIT_1_GOTO(labeld);
}

The code block may contain many instances of backward “goto” statements.
Using matching USE_n_GOTO() and EXIT_n_GOTO() statements will address
this (for example, USE_2_GOTO(), USE_3 GOTO(), etc.)

Note You must copy pstgoto.h from <PolySpaceInstallDir>/cinclude,
and add it to the list of include directories (-I).

The code block may also use several different tags. You can use multiple “tag”
parameters to address these situations. For example, use:

USE_n_GOTO (<tag 1>, <tag 2>, ..., <tag n>);
EXIT_n_GOTO(<tag 1>, <tag 2>, ..., <tag n>);

Consider the following example:

5-44

Verifying “Unsupported” Code

Original Code Modified Code for Verification
{ {
. USE_1_GOTO(Reset) ;
Reset:
Reset:
{ {
{ {
if (X) if (X)
goto Reset; GOTO(Reset);
} }
{ {
if (Y) if (Y)
goto Reset; GOTO(Reset);
} }
} }
EXIT_1_GOTO(Reset);

Types Promotion

¢ “Unsigned Integers Promoted to Signed Integers” on page 5-45
¢ “What are the Promotions Rules in Operators?” on page 5-46

¢ “Example” on page 5-47

Unsigned Integers Promoted to Signed Integers

It is important to understand the circumstances under which signed integers
are promoted to unsigned.

For example, the execution of the following code would produce an assertion
failure and a core dump.

#include <assert.h>

int f1(void) {
int x = -2;

5-45

5 Preparing Source Code for Verification

unsigned int y = 5;
assert(x <=vy);

}

Implicit promotion explains this behavior. In this example, x <= vy is
implicitly:

((unsigned int) x) <=y /* implicit promotion since y is unsigned

A negative cast into unsigned gives a large value. This value can never be <=
5, so the assertion can never hold true.

In this second example, consider the range of possible values for x:

void f2(void)
volatile int random;
unsigned int y = 7;
int x = ;
(x> -7 8&& X <=y);

assert (x>=0 && x<=7);

The first assertion is orange, it may cause an assert failure. However, given
that the range of x after the first assertion is not [-7 .. 7], but rather [0 .. 7
], the second assertion would hold true.

What are the Promotions Rules in Operators?
Knowledge of the rules applying to the standard operators of the C language

will help you to analyze those orange and red checks which relate to overflows
on type operations. Those rules are:

¢ Unary operators operate on the type of the operand,;

¢ Shifts operate on the type of the left operand;

® Boolean operators operate on Booleans;

¢ Other binary operators operate on a common type. If the types of the 2
operands are different, they are promoted to the first common type which
can represent both of them.

So:

5-46

*/

Verifying “Unsupported” Code

® Be careful of constant types.

® Be careful when verifying any operation between variables of different
types without an explicit cast.

Example

Consider the integral promotion aspect of the ANSI-C standard (see 6.2.1 in
ISO/IEC 9899:1990). On arithmetic operators like +, -, ¥, % and / , an integral
promotion is applied on both operands. From the PolySpace viewpoint, that
can imply an OVFL or a UNFL orange check.

extern char random_char(void);
extern int random_int(void);

{
char c1 = random_char();
char c2 random_char();
9 int i1 = random_int();
10 int i2 = random_int();
11
12 i1 = it i2; // A typical OVFL/UNFL on a + operator
13 ci cl + c2; // An OVFL/UNFL warning on the c1
14 // assignment [from int32 to int8]
15 }

2
3
4
5 void main(void)
6
7
8

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

extern char random_char(void);

void main(void)

2

3

4

5 {

6 char c1 = random_char();
7

8

9

1

1

char c2 random_char();

cl = (char)((int)c1 + (int)c2); // Warning OVFL: due to
// integral promotion

5-47

5 Preparing Source Code for Verification

5-48

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

In general, integral promotion requires that the abstract machine should
promote the type of each variable to the integral target size before realizing
the arithmetic operation and subsequently adjusting the assignment type.
See the equivalence example of a simple addition of two char(above).

Integral promotion respects the size hierarchy of basic types:

® char (signed or not) and signed short are promoted to int.

® unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (perhaps because of a
16-bit target, for example) then unsigned short is promoted to unsigned int.

e Other types like (un)signed int, (un)signed long int and (un)signed long
long int promote themselves.

Running a Verification

® “Types of Verification” on page 6-2
¢ “Running Verifications on PolySpace Server” on page 6-3
¢ “Running Verifications on PolySpace Client” on page 6-22

¢ “Running Verifications from Command Line” on page 6-27

6 Running a Verification

6-2

Types of Verification

You can run a verification on a server or a client.

Use...

For...

Server

¢ Best performance
e Large files (more than 800 lines of code including comments)

e Multitasking

Client

® An alternative to the server when the server is busy

® Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

Running Verifications on PolySpace® Server

Running Verifications on PolySpace Server

In this section...

“Starting Server Verification” on page 6-3
“What Happens When You Run Verification” on page 6-4
“Running Verification Unit-by-Unit” on page 6-5

“Managing Verification Jobs Using the PolySpace Queue Manager” on
page 6-7

“Monitoring Progress of Server Verification” on page 6-8

“Viewing Verification Log File on Server” on page 6-11

“Stopping Server Verification Before It Completes” on page 6-13
“Removing Verification Jobs from Server Before They Run” on page 6-14
“Changing Order of Verification Jobs in Server Queue” on page 6-15
“Purging Server Queue” on page 6-16

“Changing Queue Manager Password” on page 6-18

“Sharing Server Verifications Between Users” on page 6-18

Starting Server Verification

Most verification jobs run on the PolySpace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Select the Send to PolySpace Server check box next to the Start button
in the middle of the Launcher window.

send to PolySpace Server [v ¥ Start |

6 Running a Verification

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

4 (Click Start.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 6-4.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

5 When you see the message Verification process completed, click OK
to close the message dialog box.

6 For information on downloading and viewing your results, see “Opening
Verification Results” on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI® standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software”
in the PolySpace Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

6-4

Running Verifications on PolySpace® Server

* A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

* A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For the following verification, the identification number is 1.

send to PolySpace Server [v ¥ Start |

Compile : 100% Intermediate : 0% Leveld : 0% | Levell: 0% | L
00:00:12 00:00:00 00:00:00 00:00:00

Search: 44 I (13

Description File | Line | Col

@ Full Log

PolySpace Launcher for C verification start at Jul 8, 2009...

The analysis has been queued with ID=8

Running Verification Unit-by-Unit
When launching a server verification, you can create a separate verification
jobs for each source file in the project. Each file is compiled, sent to the

PolySpace Server, and verified individually. Verification results can then be
viewed for the entire project, or for individual units.

To run a unit-by-unit verification:

1 In the Launcher, ensure that the Send to PolySpace Server check box
1s selected.

send to PolySpace Server [v ¥ Start |

2 In the Analysis options, expand PolySpace inner settings.

3 Select the Run a verification unit by unit check box.

6 Running a Verification

6-6

El-PolySpace inner settings

E--Run a verification unit by unit W

-unit-by-unit

e-Uniit by unit comrmon source C:\PolySpacepaoly ...

-unit-by-unit-common-source

4 Expand the Run a verification unit by unit item.

5 Click the button I_I to the right of the Unit by unit common source

option.

The Unit by unit common source dialog box opens.

~Unit by unit common source [-unit-by-unit-common-source]

C:\PolySpace\polyspace_projectiindudestindude.h

C:\PolySpace\palyspace_projectiindudesimath.h

Ok

Cancel

6 Click the folder icon E‘

The Select a file to include dialog box appears.

7 Select the common files to include with each unit verification.

These files are compiled once, and then linked to each unit before

verification. Functions not included in this list are stubbed.

8 Click Ok.

9 Click Start.

Running Verifications on PolySpace® Server

Each file in the project is compiled, sent to the PolySpace Server, and
verified individually as part of a verification group for the project.

Managing Verification Jobs Using the PolySpace
Queue Manager

You manage all server verifications using the PolySpace Queue Manager (also
called the PolySpace Spooler). The PolySpace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual
verifications, and download results.

Note The PolySpace Queue Manager is not available on UNIX® or Linux
systems. To manage server verifications on UNIX or Linux systems, you must
use batch commands. For information on managing verification jobs from the
command line, see “Managing Verifications in Batch” on page 6-27.

To manage verification jobs on the PolySpace Server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-7

6 Running a Verification

6-8

DA n = e & = = L]
Operations Help
1D | Bustheon o Rezuks di CFU Stabuz Diate Language|
1 H ADATS
2 polyspace Dema C_Deskiop & AESULTS\RES 4.1 EEAGEROM | complsted | 20.Dec-2005, 123932 C

Connected o Queus Manager locathost

Lsar moda

2 Right-click any job in the queue to open the context menu for that

verification.

Follow Progress. ..
Wigw Log File. ..
Download Results., ..

Download Resulks And Remove From Queue. ..

Mowve Down In Quele

Skop...
Stop &nd Download Results. ..
Stop And Remove From Queue. ..

Remove From Queue. ..

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon in the PolySpace Launcher toolbar.

Monitoring Progress of Server Verification
You can view the log file of a server verification using the PolySpace Queue

Manager.

Running Verifications on PolySpace® Server

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i PolySpace Queue Manager Interface

Operations Help

D | Author Application Fesulks directany CPU|[Status | Date |Langu
wour_name Example_Project C:hpolyspace_projectiresults ange runhing 008, "

2 Right-click the job you want to monitor, and select Follow Progress from
the context menu.

Note This option does not apply to unit-by-unit verification groups, only
the individual jobs within a group.

A Launcher window labeled PolySpace follow remote analysis
progress for C appears.

6-9

6 Running a Verification

PolySpace follow remote code verification progress - | El|ﬂ

File Edit Help

Sendto PalyEpace Server v

6 Stop Execution |

Intermediate : 100% vl ;1 3 2vel] 3 evel2 100% : 5 Tatal
00:00:15 00;00:07 00;00:06 00;00; 04 00:01:36
% Compile Search: 44 |Level 4 12
% MISRA-C [Certain (Red) errors summary: ;I
mstats - certain NTC, non termination of call to example.c.Square Root, File example.c, line 240, col
- certain NTC, non termination of call ta _ polyspace stdstubs.c.sqrt, File example.c, line 1
@FullLog - certain NTC, non termination of call to exawple.c.Recursion, File example.c, line 157, colum

- certain IDP, pointer within bounds, File example.c, line 104, column 10
- certain A3RT, fajilure of user assertion, File _ polyspace_ stdstubz.c, line 866, column 2

GUI files generation complete.

Generating results in a spreadsheet format in C:ZPoly3pace\Poly3pace RlDatas‘analysislyPolySpac
Generation complete

ook o ok o

hEE

=]
Fe% Software Safety Integration Analysis Lewel 4 done hd
4 | |‘I

warification completed

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the
verification. The information appears in the log display area at the bottom
of the window. The full log displays by default. It display messages, errors,
and statistics for all phases of the verification. You can search the full log
by entering a search term in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

3 Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right

6-10

Running Verifications on PolySpace® Server

arrows to search forward. Click on any message in the log to get details
about the message.

4 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.
. Go | .
5 Click the refresh button to update the stats log display as the

verification progresses.

6 Select File > Quit to close the progress window.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

i PolySpace Queue Manager Interface

Cperations Help
D | Author Application Fiesultz directon CPU| Statuz | Date | Language

vour_name Example_Project C:Apolyspace_projecthresults anze zomplete: (008, ©

Viewing Verification Log File on Server

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-11

6 Running a Verification

6-12

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_projectiresults anze unning ‘008,

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.
" PolySpacehPolySpace_Common'Remotel auncher,whin',ps

GUI files generation complete.

Generating remote file
Done

Certain (red? errors have hbeen detected in the analysed code dugy
SE.

Analysis continuwing bhecause the option —continue—with-red—-error

aE-JnE 30 eE—aE—J0 3o -aE—J0E 30 -eE-aE-JaE-JoE~eE-JnE-Jof e -3aE-Jef-3uE e -JnE-Jnf—3ef e -Jnf-3uf e -JeE-Jaf—Jef e -JeE-JnE e eEIaE—Jaf e -eE—JnE 3o e IaE-Jef-JeE-IeE-JnE-Jef e -Ief-Jnf-Juf-ef-JaE-Jui-ef-
EaXaZad

#3%% Leyel 4 Software Safety Analysis done

EaXaZad

- oE-JmE 30 e e J0f 3o -eE-JmE-Jof -eE -3eE-JeE-JeE-oE-JnE-Jo e 3o -Jef-3uE e -JnE-Jmf 30 e -JmE-3uE e - JeE-JE 30 3o - oE-JnE 30 eEJnE-Jef 3o -eE-JmE 3o e 3eE-Je 3o e -JnE-Jef e -IeE-Jmf-3uf e -JeE-Juf-eE
Ending at: Apr 11, 20008 12:29:8

Uzer time for pass4: 35.8real, 35.8u + Bs

Uzer time for poluyspace—-c: 176.5real. 176.5u + Bs

CalaZad

##% End of PolySpace Uerifier analysis
EakaXad

Presz enter to close the window ...

" T

3 Press Enter to close the window.

Running Verifications on PolySpace® Server

Stopping Server Verification Before It Completes

You can stop a verification running on the server before it completes using
the PolySpace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over
from the beginning.

To stop a server verification:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Feszultz directon CPU| Statuz | Date | Languw
wour_name Example_Project C:hpolyspace_projectiresults anse unning 008, °

2 Right-click the job you want to monitor, and select one of the following
options:

Right-click the job you want to monitor, and select one of the following
options:

® Stop — Stops a unit-by-unit verification job without removing it. The
status of the job changes from “running” to “aborted”. All jobs in the
unit-by-unit verification group remain in the queue, and other jobs in
the group will continue to run.

¢ Stop and download results — Stops the verification job immediately
and downloads any preliminary results. The status of the verification

6-13

6 Running a Verification

6-14

changes from “running” to “aborted”. The verification remains in the
queue.

* Stop and remove from queue — Stops the verification immediately
and removes it from the queue. If the job is part of a unit-by-unit
verification group, the entire verification is removed, not just the
individual job.

Removing Verification Jobs from Server Before They
Run

If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the PolySpace Queue Manager.

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 6-13). Once you have aborted a verification, you can remove it from
the queue.

To remove a job from the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Running Verifications on PolySpace® Server

i Polyspace Queue Manager Interface

Cperations Help
D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_project’, ange running 008, "

2 Right-click the job you want to remove, and select Remove from queue.

The job is removed from the queue.

Changing Order of Verification Jobs in Server Queue

You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help
D | Author Application Feszultz directon CPU| Statuz | Date | Languw
wour_name Example_Project C:Apolyspace_projectiresults anze unning 008, °

6-15

6 Running a Verification

6-16

2 Right-click the job you want to remove, and select Move down in queue.
The job is moved down in the queue.

3 Repeat this process to reorder the jobs as necessary.

Note You can move unit-by-unit verification groups in the queue, as well as
individual jobs within a single unit-by-unit verification group. However, you
can not move individual unit-by-unit verification jobs outside of the group.

Purging Server Queue
You can purge the server queue of all jobs, or completed and aborted jobs
using the using the PolySpace Queue Manager.

Note You must have the queue manager password to purge the server queue.

To purge the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Running Verifications on PolySpace® Server

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_project’, ange running 008, "

2 Select Operations > Purge queue. The Purge queue dialog box opens.

x

Fleaze zelect the action pou want to perform and type the administrator pazsword ;

Action : Purge completed and aborted analysis j

Purge the entire queue
Password : Purge completed and aborted analyzis

] I Cancel |

3 Select one of the following options:

®* Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

¢ Purge the entire queue — Removes all jobs from the server queue.

Note For unit-by-unit verification jobs, no jobs are removed until the
entire group has been verified.

4 Enter the Queue Manager Password.
5 Click OK.

The server queue 1s purged.

6-17

6 Running a Verification

6-18

Changing Queue Manager Password

The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is administrator.

To set the Queue Manager password:

1 Double-click the PolySpace Spooler icon:
The PolySpace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.
The Change Administrator Password dialog box opens.

3 Enter your old and new passwords, then click OK.

The password is changed.

Sharing Server Verifications Between Users

Security of Jobs in Server Queue

For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate
that the job belongs to you.

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

Running Verifications on PolySpace® Server

analysis-keys.txt File

The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

e UNIX — /home/<username>/.PolySpace

e Windows® — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of this ASCII file is as follows (tab-separated):
<id of launching> <server name of IP address> <public key>
where <public key> is a value in the range [0..F]
The fields in the file are tab-separated.
The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCES576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts

To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys. txt file containing the <ID> for the
job you want to share.

2 Add this line to the analysis-keys.txt file of the person who wants
to share the file.

The second user can then download or manage the verification.

6-19

6 Running a Verification

Magic Key to Share Verifications

A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted

If your analysis-keys. txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the PolySpace Spooler icon:

6-20

Running Verifications on PolySpace® Server

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_projectiresults anze unning 008, °

2 Select Operations > Enter Administrator Mode.
3 Enter the Queue Manager Password.

4 Click OK.

You can now manage all verification jobs in the server queue, including

downloading results.

6-21

6 Running a Verification

Running Verifications on PolySpace Client

In this section...

“Starting Verification on Client” on page 6-22

“What Happens When You Run Verification” on page 6-23
“Monitoring the Progress of the Verification” on page 6-24
“Stopping Client Verification Before It Completes” on page 6-25

Starting Verification on Client

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on C code containing more than 2,000 assignments
and calls, the verification will stop and you will receive an error message.

To start a verification that runs on a client:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Ensure that the Send to PolySpace Server check box is not selected.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

5 Click the Start button.

6-22

Running Verifications on PolySpace® Client

P Start |

6 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

7 When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.

S x|
@ yerification process completed.
Do o wank to launch PolySpace Yiewer
Cancel |

8 Click OK to open your results in the Viewer.

For information on viewing your results, see “Opening Verification Results”
on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software 1s independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

6-23

6 Running a Verification

6-24

“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software”
in the PolySpace Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

Intermediate : 100%: 'u'ell: 255G | Level

00:00:04 00: 00:00:02 00
= Compile Search: 44 I (43
_@ Stats Status Description File Line Col

@ Full Log 1 |PolySpace Launcher for C verifi...

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Launcher window.

To view the logs:

1 The compile log is displayed by default.

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward. Click
on any message in the log to get details about the message.

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

Running Verifications on PolySpace® Client

o
3 Click the refresh button LI to update the stats log display as the
verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

Stopping Client Verification Before It Completes

You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the
verification starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

@ Stop Execution |

A warning dialog box appears.

waming x|

@ Do wou really want to stop the current execution ?

2 Click Yes.

6-25

6 Running a Verification

6-26

The verification stops and the message Verification process stopped

appears.

3 Click OK to close the Message dialog box.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

Running Verifications from Command Line

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 6-27

“Managing Verifications in Batch” on page 6-27

Launching Verifications in Batch

A set of commands allow you to launch a verification in batch.
All these commands begin with the following prefixes:

® Server verification —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-c

e (Client verification —polyspace-remote-desktop-c

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-c -server
[<hostname>:[<port>] | auto] allows you to send a C client
verification remotely.

Note If your PolySpace server is running on Windows, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-c.exe

Managing Verifications in Batch

In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

6-27

6 Running a Verification

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

® psqueue-download <id> <results dir> — download an identified
verification into a results directory. When downloading a unit-by-unit
verification group, all the unit results are downloaded and a summary of
the download status for each unit is displayed.

= [-f] force download (without interactivity)

= -admin -p <password> allows administrator to download results.
= [-server <name>[:port]] selects a specific Queue Manager.

= [-v]|version] gives release number.

® psqueue-kill <id> — kill an identified verification. For unit-by-unit
verification groups, you can stop the entire group, or individual jobs within
the group. Stopping an individual job does not kill the entire group.

® psqueue-purge all|ended — remove all completed verifications from
the queue. For unit-by-unit verification jobs, no jobs are removed until
the entire group has been verified.

® psqueue-dump — gives the list of all verifications in the queue associated
with the default Queue Manager. Unit-by-unit verification groups are
shown using a tree structure.

® psqueue-move-down <id>— move down an identified verification in the
Queue. Individual jobs can be moved within a unit-by-unit verification
group, but not outside of the group.

® psqueue-remove <id> — remove an identified verification in the queue.
You cannot remove a single job that is part of a unit-by-unit verification
group, you can only remove the entire group.

® psqueue-get-gm-server — give the name of the default Queue Manager.

® psqueue-progress <id>: give progression of the currently identified
and running verification. This command does not apply to unit-by-unit
verification groups, only the individual jobs within a group.

= [-open-launcher] display the log in the graphical user interface of
launcher.

= [-full] give full log file.

6-28

Running Verifications from Command Line

= psqueue-set-password <password> <new password> — change
administrator password.

® psqueue-check-config — check the configuration of Queue Manager.
= [-check-licenses] check for licenses only.

® psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs directory).

= [-list-versions] give the list of available release to upgrade.

= [-install-version <version number> [-install-dir
<directory>1] [-silent] allow to install an upgrade in a given
directory and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

6-29

6 Running a Verification

6-30

Troubleshooting
Verification Problems

e “Verification Process Failed Errors” on page 7-2

® “Compilation Errors” on page 7-7

e “Link Errors and Warnings” on page 7-15

® “Stubbing Errors” on page 7-21

e “Automatic Stub Creation Errors” on page 7-28

* “Viewing Error Information When Verification Stops” on page 7-31
¢ “Reducing Verification Time” on page 7-33

¢ “Obtaining Configuration Information” on page 7-52

* “Removing Preliminary Results Files” on page 7-54

7 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Messages Described in This Section” on page 7-2

“Hardware Does Not Meet Requirements” on page 7-2

“You Did Not Specify the Location of Included Files” on page 7-3
“PolySpace Software Cannot Find the Server” on page 7-4

“Limit on Assignments and Function Calls” on page 7-6

Messages Described in This Section

If you see a message that includes Verification process failed, it
indicates that PolySpace software could not perform the verification. The
following sections present some possible reasons for a failed verification.

Message See

Errors found when verifying “Hardware Does Not Meet

host configuration Requirements” on page 7-2
include.h: No such file or “You Did Not Specify the Location of
directory(where include.h Included Files” on page 7-3

represents the included file)

Error: Unknown host : “PolySpace Software Cannot Find
the Server” on page 7-4

License error: number-of “Limit on Assignments and Function
assignments and function calls | Calls” on page 7-6
is too big for -unit mode

Hardware Does Not Meet Requirements

Message
In the verification log:

Errors found when verifying host configuration.

Verification Process Failed Errors

Cause

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

Solution
You can:

e Upgrade your computer to meet the minimal requirements.

® In the General section of the Analysis options, select Continue with
current configuration and run the verification again.

You Did Not Specify the Location of Included Files

Message
In the verification log (where include.h represents the included file):

include.h: No such file or directory

Cause
Either the files are missing or you did not specify the location of included files.

Solution
Do one of the following:

¢ Include the file in the directory.

® Specify the proper location of include files.

The MathWorks™ recommends that you create a project file to store include
files, as described in “Creating a Project” on page 3-2.

7-3

http://www.mathworks.com/products/polyspaceclientc/requirements.html

7 Troubleshooting Verification Problems

PolySpace Software Cannot Find the Server

Message
Search in the verification log for:

Error: Unknown host :

Cause
PolySpace software uses information in the preferences to locate the server.
In this case, PolySpace software cannot find the server.

Solution
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

Verification Process Failed Errors

.Preferences

X

Tools henu Remote Launcher | Miscellaneuusl Feszult direu:tu:ur':.fl Default directory | Generic targets I

Remate configuration

v Set this option to uze the server mode by default in every hevy project

Mate: this option iz mandatory when the project containg multitasking options.

The multitazking options will be ighared athetwize.

0 Automatically detect the remate server

' Use the folloving setver and port

The setver name "localhost" can be uzed if the server iz the local machine.

K,

Apigaly Cancel

How you deal with this error depends on the selected remote configuration

option.

Remote Configuration Option

Solution

Automatically detect the remote
server

Specify the server by selecting Use
the following server and port and
providing the server name and port.

Use the following server and port

Confirm the server name and port
number are accurate.

For information about setting up a server, see the PolySpace Installation

Guide.

7-5

7 Troubleshooting Verification Problems

7-6

Limit on Assignments and Function Calls

Message

EEEE SRR R SR RS S SRS SRR EEE SRR SRS SRR SRR EEEEREEEEEEEEEEEEESEES

Beginning C to intermediate language translation

R EEEEE SRS S SRR EEEE SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEES

C to intermediate language translation 1 (P_SP)

*** | icense error: number of assignments and function calls is
too big for -unit mode (5534 v.s 2000).
*** Aporting.

Cause
PolySpace Client for C/C++ software can only verify C code with up to 2,000
assignments and calls.

Solution

To verify code containing more than 2,000 assignments and calls, launch your
verification on the PolySpace Server for C/C++.

Compilation Errors

Compilation Errors

In this section...

“Overview” on page 7-7

“Configure a Text Editor” on page 7-7
“Examining the Compile Log” on page 7-8
“Messages Described in This Section” on page 7-9
“Syntax Error” on page 7-9

“Undeclared Identifier” on page 7-10

“No Such File or Directory” on page 7-11

“Errors Resulting from Unsupported Non-ANSI Keywords Such as
@interrupt” on page 7-12

Overview

You can use PolySpace software instead of your chosen compiler to make
syntactical, semantic, and other static checks. PolySpace detects compilation
errors during the standard compliance checking stage.

The compliance checking stage takes about the same amount of time to run as
a compiler. Using PolySpace software early in development yields a number
of benefits:

® Detection of link errors

¢ Detection of errors that only appear with two or more files

® Objective, automatic, and early control of development work (possibly to
check code into a configuration management system)

Configure a Text Editor

Configure a text editor before you can open source files. See “Configuring
Text and XML Editors” on page 3-17.

7 Troubleshooting Verification Problems

Examining the Compile Log

The compile log displays compile phase messages and errors. To search the
log, enter search terms in the Search in the log box. Click the left arrows to
search backward or the right arrows to search forward.

To examine errors in the compile log:

1 Click the Compile button in the log area of the Launcher window.

A list of compile phase messages appears in the log part of the window.

Carnpile

Search: 44 I (43

Sats |5 | Descrition | Fie i co
@ Fuill Log l PalySpace Launcher for C werificstion start st Jan 13, 200...
glabal declaration of 'cos' function has incampatible type w.. |mathl .o =
) procedure main multiply defined previously defined at math. .. [math2.c 2
¥ |verifier has detected cross-files error(s) in the code.

2 Select any of the messages to see message details, as well as the full path of

the file containing the error.

Search: 44 I re .
Cetail
5. | Desciption Fie |ui|ca
i |POIySpace Launcher far C verification start at Jan 13, 200, | . i .
global declaration of 'cos' function has incotmpatible type w.. mathl o & File C:\Polydpace\polyspace prajectisourcesinathi.c line 2

1
1

Yerifier has detected cross-files error(=) in the code.

Error:
procedure main multiply defined
previously defined at mathl.c:2

3 To open the source file referenced by any message, right click the row for
the message, then select Open Source File.

Compilation Errors

s | Diescription File |Li.|col

l PaolySpace Launcher for C verification start st Jan 13, 200,
global declaration of 'cos' function has incompatible type w...
[y e tnain mult fired pr g =

mathl .o

%= Open Source File
5 Configure Editor |

The file opens in your text editor.

4 Correct the error and run the verification again.

Messages Described in This Section
This section describes messages that include the following phrases:

Phrase Found in Message See

syntax error “Syntax Error” on page 7-9

undeclared identifier “Undeclared Identifier” on page 7-10

No such file or directory “No Such File or Directory” on page
7-11

Catastrophic error: could not | “No Such File or Directory” on page

open source file 7-11

This section also describes error messages triggered by unsupported
keywords. See “Errors Resulting from Unsupported Non-ANSI Keywords
Such as @interrupt” on page 7-12.

This section includes sample code that triggers the example message.

Syntax Error

Message
Verifying compilation.c
compilation.c:3: syntax error; found “x' expecting ;'

3

7-9

7 Troubleshooting Verification Problems

7-10

Code Used
void main(void)
{

int far x;

x = 0;

X++;

}

Solution

The far keyword is unknown in ANSI C. This causes confusion at compilation
time. Should far be a variable or a qualifier? The int far x; construction
1s illegal.

Possible corrections include:

® Remove far from the source code.
® Define far as a qualifier, such as const or volatile.

® Remove far artificially by specifying a compilation flag such as -D far=
(with a space after the equal sign).

Note To specify -D compilation flags that are generic to the project, then for
efficiency use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-20.

Undeclared Identifier

Message
Verifying compilation.c
compilation.c:3: undeclared identifier “x'

Compilation Errors

Code Used

void main(void)

Solution

The type is unknown, and therefore the compilation stops. Should x be a
float, an int, or a char?

Some cross compilers define variables implicitly. Your code must declare
variables verification. PolySpace software has no knowledge about implicit
variables.

Similarly, some compilers interpret _ SP as a reference to the stack pointer.
Use the -D compilation flag.

Note To specify -D compilation flags that are generic to the project, then for
efficiency use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-20.

No Such File or Directory

Messages

Here are examples of messages that include No such file or directory
and catastrophic error: could not open source file

compilation.c:1: one_file.h: No such file or directory

compilation.c:1: catastrophic error: could not open source file
"one_file.h" (where one_file.h is an include file)

Code Used

#include "one_file.h"

7-11

7 Troubleshooting Verification Problems

7-12

Solution
The one_file.h file is missing.

These files are essential for PolySpace software to complete the compilation,
for

® Data coherency

® Automatic stubbing

Make sure that the PolySpace software can find the include folder that
contains this file. Use the -I option in the launcher, as described in the “-I
directory” reference page.

Errors Resulting from Unsupported Non-ANSI
Keywords Such as Qinterrupt

Code that includes a non-ANSI keyword that PolySpace software does not
support generates a compilation error. For example, keywords containing @
as a first character cause a compilation error. But in this case, you cannot
address the problem by using a compilation flag, nor with an -include file.

To address this problem, use the -post-preprocessing option.

When you use the -post-preprocessing option, write a script or command to
replace the unsupported, non-ANSI keyword with a supported keyword. The
command must process the standard output from preprocessing and produce
its results in accordance with standard output.

The specified script file or command runs just after the preprocessing phase
on each source file. The script executes on each preprocessed c file.

Compilation Errors

Note Preprocessed files have the extension .ci. All preprocessed files are
contained in a single compressed file named ci.zip. This file is located in the
results directory in one of the following locations:

® <results>/ALL/SRC/MACROS/ci.zip
® <results>/C-ALL/ci.zip

Caution Always preserve the number of lines in a preprocessed .ci file.
Adding a line, or removing one, can result in unpredictable behavior, including
changes to the location of checks and MACROS in the PolySpace viewer.

Here 1s an example of such a script file. Save the script in a file named
myscript.pl.

#!/usr/bin/perl
bin STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)

{

Replace keyword titi with toto

$line =~ s/titi/toto/g;

Remove @interrupt (replace with nothing)
$line =~ s/@interrupt/ /g;

DONT DELTE: Print the current processed line to STDOUT

print $line;

}

to run the script on each preprocessed c file, use this command:

-post-preprocessing-command %POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute path to myscript.pl>\myscript.pl

7-13

7 Troubleshooting Verification Problems

Note Because PolySpace software no longer includes Cygwin, all files must
be executable by Windows. To support scripting, the PolySpace installation
includes Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

7-14

Link Errors and Warnings

Link Errors and Warnings

In this section...

“Overview” on page 7-15

“Function: Wrong Argument Type” on page 7-16
“Function: Wrong Argument Number” on page 7-16
“Variable: Wrong Type” on page 7-17

“Variable: Signed/Unsigned” on page 7-17

“Variable: Different Qualifier” on page 7-18

“Variable: Array Against Variable” on page 7-18
“Variable: Wrong Array Size” on page 7-19

“Missing Required Prototype for varargs” on page 7-19

Overview
This section describes how to address some common types of link errors.

Link errors result from the checking that PolySpace performs for compliance
with ANSI C standards. Link error messages can apply to functions,
variables, and varargs.

The error message includes specific information that reflects the code that
the PolySpace software is checking, such as the function name and type
declaration.

Examining Preprocessed Code
Looking at the preprocessed code can help you to find link errors faster.

Preprocessed files have the extension .ci. All preprocessed files are contained
in a single compressed file named ci.zip. This file is located in the results

directory in one of the following locations:

® <results>/ALL/SRC/MACROS/ci.zip
® <results>/C-ALL/ci.zip

7-15

7 Troubleshooting Verification Problems

Function: Wrong Argument Type

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'f' function has incompatible type with its definition
declared function type has 'arg 1' type incompatible with definition

int f(float vy) int f(int *y);
{
int r; void main(void)
r=12; {
} int r;
r = f(&r);
}
Solution

The first parameter for the f function is either a float or a pointer to an
integer. The global declaration must match the definition.

Function: Wrong Argument Number

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'f' function has incompatible type with its definition
declared function type has incompatible args. number with definition

int f(float vy) int f(int *y);
{
int r; void main(void)
r=12; {
} int r;

r = f(&r);

}

7-16

Link Errors and Warnings

Solution

These two functions have a different number of arguments. This mismatch in
the number of arguments results in a nondeterministic execution.

Variable: Wrong Type

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x int x;
void main(void)

{}

Solution

Declare the x variable the same way in every file. If a variable x is as an
integer equal to 1, which is 0x0001, what does this value mean when seen as a
float? It could result in a NAN (Not A Number) during execution.

Variable: Signed/Unsigned

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'unsigned' type incompatible with defined 'signed' type

extern unsigned char x; char x;
void main(void)

{}

Solution

Consider the 8-bit binary value 10000010. Given that a char is 8 bits, it is
not clear whether it is 130 (unsigned), or maybe -126 (signed).

7-17

7 Troubleshooting Verification Problems

Variable: Different Qualifier

PolySpace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition
declared 'non qualified' type incompatible with defined 'volatile' type
'volatile' qualifier used

extern int x; volatile int x;

void main(void)

{}

Solution

PolySpace software flags the volatile qualifier, because that qualifier has
major implications for the verification. Because it is not clear which statement
1s correct, the verification process generates a warning.

Variable: Array Against Variable

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

void main(void)

{

Solution

The real allocated size for the x variable is one integer. Any function
attempting to manipulate x[] corrupts memory.

7-18

Link Errors and Warnings

Variable: Wrong Array Size

PolySpace Output
Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition
declared array type has 'upper bound' 5 inferior to definition 'upper bound' 12

extern int x[12]; int x[5];

void main(void)

{

Solution

The real allocated size for the x variable is five integers. Any function
attempting to manipulate x[] between x[5] and x[11] corrupts memory.

Missing Required Prototype for varargs

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...); void main(void)
{
void f(void) g(4);
{ }
g(12, abcde ,40)
}
Solution

Declare the prototype for g when main executes.

7-19

7 Troubleshooting Verification Problems

7-20

To eliminate this error, you can add the following line to main:

void g(int, ...)

Or, you can avoid modifying main by adding that same line in a new file and
then when you launch the verification, use the option

include c:\PolySpace\new_file.h

where new_file.h is the new file that includes the line void g(int, ...).

Stubbing Errors

Stubbing Errors

In this section...

“Conflicts Between Standard Library Functions and PolySpace Stubs” on
page 7-21

“_polyspace_stdstubs.c Compilation Errors” on page 7-21

“General Troubleshooting Approaches” on page 7-23

“Restart with the -I option” on page 7-23

“Include Files with Stubs to Replace Automatic Stubbing” on page 7-24
“Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-25

“Provide a .c file Containing a Prototype Function” on page 7-26

“Ignore _polyspace_stdstubs.c” on page 7-27

Conflicts Between Standard Library Functions and
PolySpace Stubs

A code set can compile successfully for a target, but during the
__polyspace_stdstubs.c compilation phase for that same code, PolySpace
software can generate an error message.

The error message highlights conflicts between:

e A standard library function that the application includes
® One of the standard stubs that PolySpace software uses in place of that

function

For more information about errors generated during automatic stub creation,
see “Automatic Stub Creation Errors” on page 7-28.

_polyspace_stdstubs.c Compilation Errors

Here are examples of the errors relating to stubbing standard library
functions. The code uses standard library functions such as sprintf and
strcpy, illustrating possible problems with these functions.

7-21

7 Troubleshooting Verification Problems

7-22

Example 1

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file
or directory

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace_ stdstubs.c:1118: syntax error; found
“strlen' expecting '’

C-STUBS/__polyspace_stdstubs.c:1120: syntax error; found "i'
expecting ;'

C-STUBS/__polyspace_stdstubs.c:1120: wundeclared identifier "i'
Example 2
Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure
‘sprintf'.

Example 3
Verifying C-STUBS/__polyspace__stdstubs.c
C-STUBS/__polyspace__ stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace_stdstubs.c:3027: syntax error; found 'n'
expecting ")

C-STUBS/__polyspace__stdstubs.c:3027: skipping 'n'

C-STUBS/__polyspace_ stdstubs.c:3037: wundeclared identifier 'n'

Stubbing Errors

General Troubleshooting Approaches

You can use a range of techniques to address these error messages. These
techniques reflect different balances for the verification between:

® Precision

® Amount of time preparing the code

¢ Execution time

Try any of the techniques in any order. Consider trying the simplest
approaches first, and trying other techniques as necessary to achieve the
balance of the trade-offs that you seek. Here are techniques, listed in order of
estimated simplicity, from simplest to most thorough:

e “Restart with the -I option” on page 7-23

® “Include Files with Stubs to Replace Automatic Stubbing” on page 7-24

® “Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-25

= Use when precision is important enough to justify extensive code
preparation time

® “Provide a .c file Containing a Prototype Function” on page 7-26
= Use when you do not want to invest much time for code preparation time
® “Ignore _polyspace_stdstubs.c” on page 7-27

If the problem remains after trying all these solutions, contact MathWorks™
support.

Restart with the -l option

Generally you can best address stubbing errors by restarting the verification.
Include the header file containing the prototype and the required definitions,
as used during compilation for the target.

The least invasive way of including the header file containing the prototype is
to use the -I option.

7-23

7 Troubleshooting Verification Problems

7-24

Include Files with Stubs to Replace Automatic
Stubbing

The PolySpace software provides a selection of files that contain stubs
for most standard library functions. You can use those stubs in place of
automatic stubbing.

For replacement of stubbing to work effectively, provide the correct include
file for the function. In the following example, the standard library function
is strlen. This example assumes that you have included string.h. Because
the string.h file can differ between targets, there are no default include
directories for PolySpace stub files.

If the compiler has implicit include files, manually specify those include files,
as shown in this example.

(_polyspace_stdstubs.c located in <<results_dir>>/C-ALL/C-STUBS)

_polyspace_stdstubs.c
#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size t strlen(const char *s)
{
size t i=0;
while (s[i] != 0)
i++;
return ij;

}
#endif /* _polyspace_strlen */

If problems remain, try one of these solutions:

® “Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-25
e “Provide a .c file Containing a Prototype Function” on page 7-26

® “Ignore _polyspace_stdstubs.c” on page 7-27

Stubbing Errors

Create a _polyspace_stdstubs.c File with Necessary
Includes

1 Copy <<results dir>>/C-ALL/C-STUBS/ _polyspace_stdstubs.c tothe
source directory and rename it polyspace_stubs.c.

This file contains the whole list of stubbed functions, user functions, and
standard library functions. For example:

#define _polyspace_strlen
#define a_user_function

2 Find the problem function in the file. For example:

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t 1i=0;
while (s[i] != 0)
it++;

return i;

}
#endif /* _ _polyspace_strlen */

The verification requires you to include the string.h file that the
application uses.

3 Do one of the following (The MathWorks recommends the first approach):

® Provide the string.h file that contains the real prototype and type
definitions for the stubbed function.

e Extract the relevant part of that file for inclusion in the verification.

For example, for strilen:
string.h
// put it in the /homemade_include directory

typedef int size_t;
size_t strlen(const char *s);

7-25

7 Troubleshooting Verification Problems

4 Specify the path for the include files and relaunch PolySpace, using one
of these commands:

polyspace-c -I /homemade_include
or

polyspace-c -I /our_target_include_path

Provide a .c file Containing a Prototype Function

1 Identify the function causing the problem (for example, sprintf).

2 If you cannot find a prototype for this function, provide a .c file containing
the prototype for this function.

3 Restart the verification either with the PolySpace Launcher or from the
command line.

You can find other __polyspace _no_function_name options in
_polyspace__stdstubs.c files, such as:

__polyspace_no_vprintf
__polyspace_no_vsprintf
__polyspace_no_fprintf
__polyspace_no_fscanf
__polyspace_no_printf
__polyspace_no_scanf
__polyspace_no_sprintf
__polyspace_no_sscanf
__polyspace_no_fgetc
__polyspace_no_fgets
__polyspace_no_fputc
__polyspace_no_fputs
__polyspace_no_getc

Note If you are considering defining multiple project generic -D options, then
using the -include option can provide a more efficient solution to this type of
error. Refer to “How to Gather Compilation Options Efficiently” on page 4-20.

7-26

Stubbing Errors

Ignore _polyspace_stdstubs.c

When all other troubleshooting approaches have failed, you can try ignoring
_polyspace_stdstubs.c. Toignore polyspace_stdstubs.c, but still see
which standard library functions are in use:

1 Do one of the following:

Deactivate all standard stubs using -D POLYSPACE_NO_STANDARD_STUBS
option. For example:

polyspace-c -D POLYSPACE_NO_STANDARD_STUBS

Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_ STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_STRICT ANSI_STANDARD_STUBS

This approach presents a list of functions PolySpace software tries to stub,
as. It also lists the standard functions in use (most probably without any
prototype), and generates the following type of message:

* Function strcpy may write to its arguments and may
return parts of them. Does not model pointer effects.
Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype

2 Add a proper include file in the C file that uses your standard library
function. If you restart PolySpace with the same options, the default
behavior results for these stubs for this particular function.

Consider the example size t strcpy(char *s, const char *i) stubbed to

®* Write anything in *s

® Return any possible size t

7-27

7 Troubleshooting Verification Problems

7-28

Automatic Stub Creation Errors

In this section...

“Three Types of Error Messages” on page 7-28
“Function Pointer Error” on page 7-28
“Unknown Prototype Error” on page 7-29

“Parameter -entry-points Error” on page 7-29

Three Types of Error Messages

The PolySpace software generates three different types of error messages
during the automatic creation of stubs.

For more information about stubbing errors, see “Stubbing Errors” on page
7-21.

Function Pointer Error

Message

Fatal error: function 'f' refers to a function pointer either
much too complex or in a too-complex data-structure, or with
unknown parameters.

It cannot be stubbed automatically.

Solution
Consider a prototype f that contains a function pointer as a parameter.

If the function pointer prototype only contains scalars and/or floats, then the
PolySpace software automatically stubs f.

For example, the verification process automatically stubs the following
function:

int f()
void (*ptr_ok)(int, char, float),

Automatic Stub Creation Errors

other_typel other_parami);

If this function pointer prototype also contains pointers, you get the error
message and have to stub the f function manually.

For example, stub the following function manually (unless you use the
-permissive-stubber option):

int f()
void (*ptr_ok)(int *, char, float),
other_type1l other_paramil);

Unknown Prototype Error

Message

Fatal error: function 'f' has unknown prototype

Error message explanation:

"function has wrong prototype" means that either the function
has no prototype or its prototype is not ANSI compliant.

"task is undefined" means that a function has been declared
to be a task but has no known body

Solution
Provide an ANSI-compliant prototype.

Parameter -entry-points Error

Message

*** \erifier found an error in parameter -entry-points: task "w"
must be a userdef function

--- Found some errors in launching command. ---
--- Please consult rte-kernel -h to correct them ---
--- and launch the verification again. ---

7-29

7 Troubleshooting Verification Problems

Solution

A function or procedure declared to be an -entry-point cannot be an
automatically stubbed function.

7-30

Viewing Error Information When Verification Stops

Viewing Error Information When Verification Stops

In this section...

“Verification Stopped Errors” on page 7-31
“Using the Log File” on page 7-31

“Log File Example” on page 7-31

Verification Stopped Errors

The verification log can indicate detection of an error in the previous phase,
and that the verification has therefore stopped. This part of the verification
process is the intermediate language verification.

Using the Log File
If PolySpace software provides no graphical result, it lists the errors and their

locations at the end of the log file. To find them, scroll through the verification
log file, starting at the end and working backwards.

Log File Example

This example only explains where to find the error list. See “Check
Descriptions” for details about the error messages.

***** G to intermediate language translation 13.29 (P_SENUP) took
0.000773real, 0.000773u + 0.0s

1 User Program Errors:

* failure of correctness condition [non-initialized variable]

"&" file intermediate.c line 5 column O

Please correct the program and restart the verifier.

x G to intermediate language translation 13.30 (IL Partition)
0 empty package(s) removed

x G to intermediate language translation 13.30 (IL Partition)

7-31

7 Troubleshooting Verification Problems

took 0.002252real, 0.002252u + 0.0s

**** G to intermediate language translation 13 (P_IL) took
1.069168real, 1.069168u + 0.0s

0 empty package(s) removed

**** G to intermediate language translation 14 (P_IPF)

96% init procedures removed

**** G to intermediate language translation 14 (P_IPF) took
0.002401real, 0.002401u + 0.0s

* terminating ../il-sources/a0.ads

* terminating ../il-sources/a0.adb

**** G to intermediate language translation 15 (P_TW)

**** G to intermediate language translation 15 (P_TW) took
0.003055real, 0.003055u + 0.0s

* assigns: 100% reduction

* asserts: 100% reduction

* total : 54% reduction

User time for command “iabc-c2if -input-file': 17 seconds on host
parisi2

EEEEEEEEEEE S S S S SRR EE S SRR SRR SRR EEEEEEEREEEEEEEEEEREEESE S

* %%

*** G to intermediate language translation done

* %%

EEEEEEEEEEE S S EEEEEEEE S SRR SRR SRR EEEEEEEREEEEEEEEEEREEESE S

Ending at: Oct 31, 2002 14:29:26
Certain (red) errors detected during previous phase.
You must correct them before continuing.

7-32

Reducing Verification Time

Reducing Verification Time

In this section...

“Factors Impacting Verification Time” on page 7-33

“Displaying Verification Status Information” on page 7-34
“Techniques for Improving Verification Performance” on page 7-35
“Turning Antivirus Software Off” on page 7-38

“Tuning PolySpace Parameters” on page 7-38

“Subdividing Code” on page 7-39

“Reducing Procedure Complexity” on page 7-49

“Reducing Task Complexity” on page 7-50

“Reducing Variable Complexity” on page 7-50

“Choosing Lower Precision” on page 7-51

Factors Impacting Verification Time

These factors affect how long it takes to run a verification:

® The size of the code
¢ The number of global variables

¢ The nesting depth of the variables (the more nested they are, the longer
it takes)

® The depth of the call tree of the application
¢ The intrinsic complexity of the code, particularly with regards to pointer

manipulation

Because many factors impact verification time, there is no precise formula
for calculating verification duration. Instead, PolySpace software provides
graphical and textual output to indicate how the verification is progressing.

7-33

7 Troubleshooting Verification Problems

Displaying Verification Status Information

For server verifications, you can use the PolySpace Queue Manager to follow
the progress of your verification. For more information, see “Monitoring
Progress of Server Verification” on page 6-8.

For client verifications, you can monitor the progress of your verification using
the progress bar and Stats log in the Launcher. For more information, see
“Monitoring the Progress of the Verification” on page 6-24.

H PolySpace follow remote code verification progress - | Ellil

File Edit Help

6 Stop Execution |

Tatal

00:00: 05 00:00:15 00:00:07 00:00:06 00:00:04 00:01:36

@ Coimpile Search 44 |Level 4 42
@ MISREA-C [Certain (Red) errors summary: ﬂ

Wstats - certain NTC, non termination of call to example.c.3quare_Root, File example.c, line 240, col
- certain NTC, non termination of call to polyspace_ stdstubs.c.sqrt, File example.c, line 1

@Fu"mg - certain NTC, non termination of call to exawple.c.Recursion, File example.c, line 157, colum
- certain IDP, pointer within bounds, File example.c, line 104, column 10
- certain A5RT, failure of user assertion, File paolyspace_ stdstubs.c, line 8§66, column 2

GUI files generation complete.

Fenerating results in a spreadsheet format in C:iZPolydpace)\Polyipace_RLDatas‘analyzisl\FPolyipac

Generation complete

R T T A T A T A A N R R T R TR AT AL AR LA LR A L RTLHHHS

HEE =
*%% Zoftware Jafety Integration Analysis Lewel 4 done -
Kl | r'

“erification completed

The progress bar highlights each completed phase and displays the amount
of time for that phase. You can estimate the remaining verification time by
extrapolating from this data, and considering the number of files and passes
remaining.

7-34

Reducing Verification Time

Techniques for Improving Verification Performance

This chapter suggests methods to reduce the duration of a particular
verification, with minimal compromise for the launch parameters or the
precision of the results.

You can increase the size of a code sample for effective analysis by tuning the
tool for that sample. Beyond that point, subdividing the code or choosing a
lower precision level offers better results (-01, -00).

You can use several techniques to reduce the amount of time required for a
verification, including

¢ “Turning Antivirus Software Off” on page 7-38

¢ “Tuning PolySpace Parameters” on page 7-38

¢ “Subdividing Code” on page 7-39

¢ “Reducing Procedure Complexity” on page 7-49

¢ “Reducing Task Complexity” on page 7-50

¢ “Reducing Variable Complexity” on page 7-50

¢ “Choosing Lower Precision” on page 7-51

You can combine these techniques. See the following performance tuning
flow charts:

e “Standard Scaling Options Flow Chart” on page 7-36

e “Alias Complexity Flow Chart” on page 7-37

7-35

7 Troubleshooting Verification Problems

7-36

Standard Scaling Options Flow Chart
Step 1: standard scaling options

- CPU must be > 1 GHz

- RAM must be > 1 Gb

- Swap files must be < 450 Mb
- Swap must be > 2x RAM

Hardware configuration ok?

Make sure no other verification is running

A slow verification can be normal
- Try the option -to passO
- Consider splitting the application

Application over 50K lines?

Set the following options:
-respect-types-in-globals
-respect-types-in-fields

Blocked in 02, O1, O0?

Refer to the the next page:
Step2: alias complexity

Still blocked?
Yes

Reducing Verification Time

Alias Complexity Flow Chart
Step 2: alias complexity

Status : {See step 1)
blocked 'in the desired -precis
p CPtions -respect-TypEs-—.. ars
.,--"_F-r!--\--‘_""-u__
ot T
" . T
_::---"’ Are all figures T
T available? (1) " ves
— e
R et
Stub all function to “puare”™ 1
stub varargs functions to pure (“delete” this - %
function calls using "#define DbgPrint (args e R“‘a._
)" or stub it. o Arevarargs and —
- n ___,.,--"'
“‘H_____-.:l;ubs pure’ -,
A
J_L_es
.-'-"'-F - H‘-\--\-\-""--\.
Launch again with “export ______,.a--"’ PGCPTS 3 (gaa '““-h-u___h_h:.
PST_CLONE_LEVEL=0" in lauvnching T analysis complete)?
o 2 T
— —

I-'es
All figures are available

Intermediate language translation
has completed.

Here is a typical set of statistics. You can find them for any application by
using the polyspace-stats utility (available at MATLAB Central), at any
point after the intermediate language translation completes.

7-37

7 Troubleshooting Verification Problems

Some stats on aliases use:
Number of alias writes: 2672
Number of must-alias writes: O
Number of alias reads: O
Number of invisibles: 60
Number of global invisibles: 3808
Stats about alias writes:
biggest sets of alias writes: Variable 1 (45), Variable_ 1 (32)
procedures that write the biggest sets of aliases: procedure_f_1
(583), procedure_f 2 (369), procedure_f_ 3 (264)

You can reduce the pointers complexity by inlining the
following functions

procedure_g 1 procedure_g 2

procedure_g 3

In terms of reducing code complexity, The MathWorks recommends that you
try the following techniques, in the order listed:

¢ “Reducing Procedure Complexity” on page 7-49

¢ “Reducing Task Complexity” on page 7-50

¢ “Reducing Variable Complexity” on page 7-50

After you use any of these techniques, restart the verification.

Turning Antivirus Software Off

Disabling or switching off any third-party antivirus software for the duration
of a verification can reduce the verification time by up to 40%.

Tuning PolySpace Parameters

Impact of Parameter Settings

Compromise to balance the time required to perform a verification and the
time required to review the results. Launching PolySpace verification with
the following options reduces the time taken for verification. However, these
parameter settings compromise the precision of the results. The less precise

7-38

Reducing Verification Time

the results of the verification, the more time you can spend reviewing the
results.

Recommended Parameter Tuning
The MathWorks suggests that you use the parameters in the sequence listed.

If the first suggestion does not increase the speed of verification sufficiently,
then introduce the second, and so on.

¢ Switch from -O2 to a lower precision;

® Set the -respect-types-in-globals and -respect-types-in-fields
options;

® Set the -k-1imiting option to 2, then 1, or 0;
e Manually stub missing functions which write into their arguments.

® [f some code uses some large arrays, use the -no-fold option.
For example, an appropriate launching command is

polyspace-c -00 -respect-types-in-globals -k-limiting O

Subdividing Code

® “An Ideal Application Size” on page 7-39

® “Benefits of Subdividing Code” on page 7-40

e “Possible Issues with Subdividing Code” on page 7-40
® “Recommended Approach” on page 7-42

e “Selecting a Subset of Code” on page 7-43

An Ideal Application Size

People have used PolySpace software to analyze numerous applications with
greater than 100,000 lines of code.

There always is a compromise between the time and resources required to

analyze an application, and the resulting selectivity. The larger the project
size, the broader the approximations PolySpace software makes. Broader

7-39

7 Troubleshooting Verification Problems

7-40

approximations produce more oranges. Large applications can require you to
spend much more time analyzing the results and your application.

These approximations enable PolySpace software to extend the range of
project sizes it can manage, to perform the verification further, and to solve
traditionally incomputable problems. Balance the benefits derived from
verifying a whole large application against the loss of precision that results.

Benefits of Subdividing Code

Subdividing a large application into smaller subsets of code provides several
benefits. You:

® Quickly isolate a meaningful subset

e Keep all functional modules

¢ Can maintain a high precision level (for example, level 02)

¢ Reduce the number of orange items

® Get correct results are correct because you do not need to remove any
thread affecting change shared data

¢ Reduce the code complexity considerably

Possible Issues with Subdividing Code
Subdividing code can lead to these problems:

® QOrange checks can result from a lack of information regarding the
relationship between modules, tasks, or variables.

® Orange checks can result from using too wide a range of values for stubbed
functions.

® Some loss of precision; the verification consider all possible values for a
variable.

When the Application is Incomplete. When the code consists of a small
subset of a larger project, PolySpace software automatically stubs many
procedures. PolySpace bases the stubbing on the specification or prototype of
the missing functions. PolySpace verification assumes that all possible values
for the parameter type are returnable.

Reducing Verification Time

Consider two 32-bit integers a and b, which are initialized with their full
range due to missing functions. Here, a*b causes an overflow, because a and b
can be equal to 2”31. Precise stubbing can reduce the number of incidences of
these data set issue

Now consider a procedure f that modifies its input parameters a and b. f
passes both parameters by reference. Suppose a can be from 0 through 10,
and b any value between -10 and 10. In an automatically stubbed function,
the combination a=10 and b=10 is possible, even if it is not possible with the
real function. This situation introduces orange checks in a code snippet such
as 1/(a*b - 100), where the division would be

® So, even with precise stubbing, verification of a small section of code can
introduce extra orange checks. However, the net effect from reducing the
complexity is to reduce the total number of orange checks.

e With default stubbing, the increase in the number of orange checks as the
result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size. PolySpace can make
approximations when computing the possible values of the variables, at any
point in the program. Such an approximation use a superset of the actual
possible values.

For instance, in a relatively small application, PolySpace software can retain
detailed information about the data at a particular point in the code. For
example, the variable VAR can take the values {-2;1;2;10;15;16;17;
25 }. If the code uses VAR to divide, the division is green (because O is not a
possible value).

If the program is large, PolySpace software simplifies the internal data
representation by using a less precise approximation, such as [-2 ; 2] U
{10} U [15 ; 17] U {25} . Here, the same division appears as an orange
check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace can further simplify the VAR range to (say) [-2 ; 20].

This phenomenon increases the number of orange warnings when the size of
the program becomes large.

7-41

7

Troubleshooting Verification Problems

7-42

Recommended Approach

The MathWorks recommends that you begin with file-by-file verifications
(when dealing with C language), package-by-package verifications (when
dealing with Ada language), and class-by-class verifications (when dealing

with C++ language).

The maximum application size is between 20,000 (for C++) and 50,000 lines of
code (for C and Ada). For such applications of that size, approximations are
not too significant. However, sometimes verification time is extensive.

Experience suggests that subdividing an application before verification
normally has a beneficial impact on selectivity. The verification produces
more red, green and gray checks, and fewer unproven Orange checks. This

subdivision approach makes bug detection more efficient.

Y4 of oranges

Oranges due to
missing parts of the
software

Size (lines of code)

Best usage,
Between 20 and 50K lines

Oranges due to complexity

A compromise between selectivity and size

PolySpace verification is most effective when you use is as early as possible in

the development process, before any other form of testing.

Reducing Verification Time

When you analyze a small module (for example, a file, piece of code, or
package) using PolySpace software, focus on the red and gray checks.
unproven checks at this stage are interesting, because most of them deal with
robustness of the application. The checks change to red, gray, or
green as the project progresses and you integrate more modules.

In the integration process, code can become so large (50,000 lines of code or
more). This amount of code can cause the verification to take an unreasonable
amount of time. You have two options:

® Stop using PolySpace verification at this stage (you have gained many
benefits already).

® Analyze subsets of the code.

Selecting a Subset of Code

Subdividing a project for verification takes considerably less verification time
for the sum of the parts than for the whole project considered in one pass.
Consider data flow when you subdivide the code.

Consider two distinct concepts:

¢ Function entry-points — Function entry-points refer to the PolySpace
execution model, because they start concurrently, without any assumption
regarding sequence or priority. They represent the beginning of your call
tree.

® Data entry-points — Regard lines in the code that acquire data as data
entry points.

Example 1

int complete_treatment_based_on_x(int input)

{

thousand of line of computation...

}

Example 2

void main(void)

{

7-43

7 Troubleshooting Verification Problems

7-44

int x;
X = read_sensor();
y = complete_treatment_based_on_x(x);

}
Example 3

#define REGISTER_1 (*(int *)0x2002002)

void main(void)

{
X
y

}

REGISTER_1;
complete_treatment_based_on_x(X);

In each case, the x variable is a data entry point and y is the consequence of
such an entry point. y can be formatted data, due to a complex manipulation
of x.

Because x is volatile, a probable consequence is that y contains

all possible formatted data. You could remove the procedure

complete treatment based on_x completely, and let automatic stubbing
work. The verification process considers y as potentially taking any value in
the full range data (see “Stubbing” on page 5-2).

//removed definition of complete_treatment_based_on_x

void main(void)

{
X
y

}

// what ever
complete_treatment_based_on_x(x); // now stubbed!

Typical Examples of Removable Components, According to the Logic
of the Data. Here are some examples of removable components, based on
the logic of the data:

¢ Error management modules often contain a large array of structures
accessed through an API, but return only a Boolean value. Removing the
API code and retaining the prototype causes the automatically generated
stub to return a value in the range [-2"31, 2731-1], which includes 1 and
0. PolySpace considers the procedure able to return all possible answers,
just like reality.

Reducing Verification Time

¢ Buffer management for mailboxes coming from missing code —
Suppose an application reads a huge buffer of 1024 char. The application
then uses the buffer to populate three small arrays of data, using a
complicated algorithm before passing it to the main module. If the
verification excludes the buffer, and initializes the arrays with random
values instead, then the verification of the remaining code is just the same.

® Display modules

Subdivision According to Data Flow. Consider the following example.

varl) Module A containing | 5 vard | Module B containing
more than one function. more than one funection.
ey - Al - = Bl
VArS - . VAD
- A2 -~ B2
= A3 # B3
vard g L e varf

Module A reads variables varl, var2, var3
And produces variables vard, var5, varf

In this application, variables 1, 2 and 3 can vary between the following ranges:

Varl From 0 through 10
Var2 From 1 through 100
Var3 From —10 through 10

Module A consists of an algorithm which interpolates between vari and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to O,
the result in var4 is also equal to O.

As a result, var4, var5 and vareé have the following specifications:

7-45

7 Troubleshooting Verification Problems

Ranges var4 Between —60 and 110
var5s From 0 through 12
vareé From 0 through 100
Properties And a set of e If var2 is equal to 0, than
properties between var4>vars>5.
variables

e [f var3 is greater than 4, than
var4<varbs<12

Subdivision in accordance with data flow allows you to analyze modules A
and B separately.

® A uses variables 1, 2 and 3 initialized respectively to [0;10], [1;100] and
[-10;10]

® B uses variables 4, 5 and 6 initialized respectively to [-60;110], [0;12]
and [-10;10]

The consequences are:

® A slight loss of precision on the B module verification, because now
PolySpace considers all combinations for variables 4, 5 and 6. It includes
all possible combinations, even those combinations that the module A
verification restricts.

For example, if the B module included the test
If var2 is equal to 0, than var4>var5>5
then the dead code on any subsequent else clause is undetected.

® An in-depth investigation of the code is not necessary to isolate a
meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data.

® The results remain valid, because there no requirement to remove (for
example) a thread that changes shared data.

® The code is less complex.

® You can maintain the maximum precision level.

7-46

Reducing Verification Time

Typical examples of removable components:

® Error management modules. A function has_an_error_already_occurred
can return TRUE or FALSE. Such a module can contain a large array of
structures accessed through an API. Removing API code with the retention
of the prototype results in the PolySpace verification producing a stub that
returns [-2731, 2731-1]. That result clearly includes 1 and 0 (yes and
no). The procedure has_an_error_already occurred returns all possible
answers, just like the code would at execution time.

¢ Buffer management for mailboxes coming from missing code. Suppose the
code reads a large buffer of 1024 char and then collates the data into three
small arrays of data, using a complicated algorithm. It then gives this data
to a main module for treatment. For the verification, PolySpace can remove
the buffer and initialize the arrays with random values.

¢ Display modules.

Subdivide According to Real-Time Characteristics. Another way of
splitting an application is to isolate files which contain only a subset of tasks,
and to analyze each subset separately.

If a verification initiates using only a few tasks, PolySpace loses information
regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and reads it at a particular moment, then the values of x
Impact subsequent operations in T2.

For example, consider that T1 can write either 10 or 12 into x and that T2 can
both write 15 into x and read the value of x. Two ways to achieve a sound
standalone verification of T2 are:

® You could declare x as volatile to take into account all possible executions.
Otherwise, x takes only its initial value or x variable remains constant,
and verification of T2 is a subset of possible execution paths. You can get
precise results, but it includes one scenario among all possible states for
the variable x.

7-47

7 Troubleshooting Verification Problems

7-48

® You could initialize x to the whole possible range [10;15], and then call
the T2 entry-point. This approach is accurate if x is calibration data.

Subdivide According to Files. This method is simple, but it can produce
good results when you are trying to find red errors and bugs in gray code.

Simply extract a subset of files and perform a verification using one of these
approaches:
e Use entry-points.

® (Create a main that calls randomly all functions that the subset of the code
does not call.

Reducing Verification Time

Reducing Procedure Complexity

Reduce procedure complexity

inline option?

The user can use the inline option applies to some function. Which function should the user add in the —

v

sequence for procedure_g #

___.-F'"-(-F '\-\.____\-
= =
o e
,,-"'ff Ty
:" write in its parameters
T —
o T G T
— =
""-\.____\-\-\- ___.--“')
L _I_'iej
,1-.;,—-—-_‘__________ is = 20 lines of C code
Y 2
e Ves T
mo—=—______ has no embedded loop =
L4 T
."-/
.-""—-

.—-"'-) ' = =
- passes itz pointer

-2 parameters (*) to

o another procedure
E“‘x 1er p -
% e
x“‘a -
< Ves

the procedure must NOT be mlined

e

no

v

sequence for procedure_f =

o -

- e
o~ 1
" are the procedure_f # e

- -

~ also n the “g~ list —

., -

S - %7
- (procedure g #)7
. (pro _E_#) et

T ___-J"'-r

-\-\"'\-\.___\-\---’-‘__,-"

—_—

[Y

add the procedure in the —inline list
-inline “test procedure_g 12 other procedure”

7-49

7 Troubleshooting Verification Problems

7-50

For example, analyze whether a procedure pass its pointer parameters to
another procedure?

YES NO NO
void f(int *p) void f(int q) void f(int *r)
{ {
f2(p) *r=12
} }

Reducing Task Complexity

If the code contains two or more tasks, and particularly if there are more than
10000 alias reads, set the -1ightweight-thread-model option. This option
reduces:

e Task complexity

e Verification time
There are some downsides:

e [t causes more oranges and a slight loss of precision on reads of shared
variables through pointers.

® The dictionary can omit some read/write accesses.

Reducing Variable Complexity

Variable Action
Characteristic

The types are complex. Set the -k-1imiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision.

There are large arrays Set the -no-fold option.

Reducing Verification Time

Choosing Lower Precision

The amount of simplification applied to the data representations depends on
the required precision level (00, 02), PolySpace software adjusts the level of
simplification. For example:

® -00 — shorter computation time

® .02 — less orange warnings

® .03 — less orange warnings and longer computation time. The MathWorks
recommends using this option only for projects containing less than 1,000
lines of code.

7-51

7 Troubleshooting Verification Problems

Obtaining Configuration Information

The polyspace-ver command allows you to quickly gather information on
your system configuration. You should use this information when entering
support requests.

Configuration information includes:

e Hardware configuration

e Operating System

PolySpace Licenses

® Specific version numbers for PolySpace products
To obtain your configuration information, enter the following command:

e UNIX./Linux — <PolySpaceInstallDir>/Verifier/bin/polyspace-ver

* Windows —
<PolySpaceInstallDir>/Verifier/wbin/polyspace-ver.exe

The configuration information appears.

7-52

Obtaining Configuration Information

CA\WINNT \system32\cmd.exe

C:“PolySpace“PolySpaceFo ndCPP_R28@9b\Uerif iersubin>
Machine Hardware Configuration:

Number of CPlUs
CPU frequency
CPU type

Memory

Swap

stmp free space

Machine Software Configuration:

Windows P <(Service Pack 32

PolySpace Licenses:

PolySpace_Client_C_CPP:
License Mumber: DEMO
Expiration date: 28-oct—-2809

PolySpace_Server C_CPP:
License Numher: DEMO
Expiration date: 28-oct-2089%

FPolySpace _Model_Link_SL:
License Number: DEMO
Expiration date: 28-oct-208%

PolySpace Uersions:

PolySpace Uersion RZBB%h

=* Kernel CC-7.1.8.U1

= Uiewer IHME-R2B89h-U%
= Launcher IHML-R2B@7h-U%
= Remote Launcher RL-R28BA%h—U6
* Uiswal Plugin PUPG_B_1 &5

* PolySpace In One Click POC-R2B09h—-V4
= MBD Plugin HED-R2AA7h-U4
* Automatic Orange Tester AOT-R2B09bh-U4

Remote Launcher configuration
* Compatibility version 3_12_2

Server :
FPolySpace_Server_ C_CPP.mathworks.com

C:sPolySpacesPolySpaceForCandCPP_RZ2BA7h“Verifierswhin’>

polyspace—ver.exe

Note You can obtain the same configuration inform
Help > About in the Launcher.

ation by selecting

7-53

7 Troubleshooting Verification Problems

7-54

Removing Preliminary Results Files

By default, the software automatically deletes preliminary results files when
they are no longer needed by the verification. However, if you run a client
verification using the option keep-all-files, preliminary results files are
retained in the results directory. This allows you to restart the verification
from any stage, but can leave unnecessary files in your results directory.

If you later decide that you no longer need these files, you can remove them.
To remove preliminary results files:
1 Open the project containing the results you want to delete In the Launcher.

2 Select Tools > Clean Results.

The preliminary results files are deleted.

Note To remove all verification results from your results directory (including
the final results), select Tools > Delete Results.

Reviewing Verification
Results

e “Before You Review PolySpace Results” on page 8-2

® “Opening Verification Results” on page 8-8

® “Reviewing Results in Assistant Mode” on page 8-19

e “Reviewing Results in Expert Mode” on page 8-27

* “‘Importing and Exporting Review Comments” on page 8-41
® “Generating Reports of Verification Results” on page 8-44

e “Using PolySpace Results” on page 8-51

8 Reviewing Verification Results

8-2

Before You R

eview PolySpace Results

In this section...

“Overview: Understanding PolySpace Results” on page 8-2
“Why Gray Follows Red and Green Follows Orange” on page 8-3
“The Message and What It Means” on page 8-4

“The C Explanation” on page 8-5

Overview: Understanding PolySpace Results

PolySpace software presents verification results as colored entries in the
source code. There are four main colors in the results:

Red — Indicates code that always has an error (errors occur every time
the code is executed).

Gray — Indicates unreachable code (dead code).
Orange — Indicates unproven code (code might have a run-time error).

Green — Indicates code that never has a run-time error (safe code).

When you analyze these colors, remember these rules:

An instruction is verified only if no run-time error is detected in the
previous instruction.

The verification assumes that each run-time error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run-time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

Focus on the verification message. Do not jump to false conclusions. You
must understand the color of a check step by step, until you find the root
cause of a problem.

Determine the cause by examining the actual code. Do not focus on what
the code is supposed to do.

Before You Review PolySpace® Results

Why Gray Follows Red and Green Follows Orange

Gray checks follow red checks, and green checks are propagated out of
checks.

In the following example, consider why:

¢ The gray checks follow the red in the red function.

® There are green checks relating to the array.

void red(void) extern int Read_An_Input(void);
{ void propagate(void)
int x; {
x =1/ x; int X;
X = x + 1; int y[100];
} X = Read_An_Input();
y[X] =05 //
y[X] = 0;
}

Consider each line of code for the red function:

¢ When PolySpace divides by X, X is not initialized. Therefore, the
corresponding check (Non Initialized Variable) on X is red.

® As a result, PolySpace stops all possible execution paths because they
all produce an RTE. Therefore, the subsequent instructions are gray
(unreachable code).

Now, consider each line of code for the propagate function:

® Xis assigned the return value of Read_An_Input. After this assignment,
X = [-2731, 2731-1].

® At the first array access, you might see an “out of bounds” error because
X can equal -3 as well as 3.

® Subsequently, all conditions leading to an RTE are truncated — they are no
longer considered in the verification. On the following line, all executions
in which X = [-2731, -1] and [100, 2731-1] are stopped.

8 Reviewing Verification Results

® At the next instruction, X = [0, 99].

e Therefore, at the second array access, the check is green because X = [0, 99].

Summary
Green checks can be propagated out of checks.

The Message and What It Means

PolySpace software numbers checks to correspond to the code execution order.
Consider the instruction x++;

PolySpace first checks for a potential NIV (Non Initialized Variable) for
x, and then checks the potential OVFL (overflow). This action mimics the
actual execution sequence.

Understanding these sequences can help you understand the message
presented by PolySpace, and what that message means.

Consider an orange NIV on x in the test:
if (x > 101);

You might conclude that the verification does not keep track of the value of x.
However, consider the context in which the check is made:

extern int read_an_input(void);

void main(void)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) //
{ x++; } // gray code
}

Before You Review PolySpace® Results

Explanation

You can see the category of each check by clicking it in the Viewer. When you
examine an orange check, you see that any value of a variable that would that
results in a run-time error (RTE) is not considered further. However, as this
example NIV (Non Initialized Variable) shows, any value that does not cause
an RTE is verified on subsequent lines.

The correct interpretation of this verification result is that if x is initialized,
the only possible value for it is 100. Therefore, x can never be both initialized
and greater than 101, so the rest of the code is gray. This conclusion may be
different from what you first suspect.

Summary
In summary:

® "(x>100)" does NOT mean that PolySpace does not know anything about x.

e "(x > 100)" DOES mean that PolySpace does not know whether X is
initialized.

When you review results, remember:

® Focus on the PolySpace software message.

® Do not assume any conclusions.

The C Explanation

Verification results depend entirely on the code that you are verifying. When
interpreting the results, do not consider:

® Any physical action from the environment in which the code operates.
® Any configuration that is not part of the verification.

® Any reason other than the code itself.
The only thing that the verification considers is the C code submitted to it.

Consider the following example, paying particular attention to the dead (gray)
code following the "if" statement:

8-5

8 Reviewing Verification Results

8-6

extern int read_an_input(void);

void main(void)
{
int x;
int y[100];
X = read_an_input();
yix 1 =20; //
yIx-11 = (1 / X) + X 3
if (x == 0)
y[x] = 1; // gray code on this line
}

You can see that:

® The line containing the access to the y array is unreachable.
® Therefore, the test to assess whether x = 0 is always false.

¢ The initial conclusion is that "the test is always false." You might
conclude that this results from input data that is not equal to 0. However,
Read_An_Input can be any value in the full integer range, so this is not the
correct explanation.

Instead, consider the execution path leading to the gray code:

® The orange check on the array access (y[x]) truncates any execution path
leading to a run-time error, meaning that subsequent lines deal with only
x = [0, 99].

® The orange check on the division also truncates all execution paths that
lead to a run-time error, so all instances where x = 0 are also stopped.
Therefore, for the code execution path after the orange division sign, x
= [1; 99].

® x is never equal to O at this line. The array access is green (y (x — 1).

Summary

In this example, all the results are located in the same procedure. However,
by using the call tree, you can follow the same process even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called

Before You Review PolySpace® Results

by" call tree, and concentrate on explaining the issues by reference to
the code alone.

8-7

8 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 8-8
“Downloading Server Results to UNIX or Linux Clients” on page 8-11
“Downloading Results from Unit-by-Unit Verifications” on page 8-12
“Opening Verification Results” on page 8-12

“Exploring the Viewer Window” on page 8-13

“Selecting Viewer Mode” on page 8-16

“Setting Character Encoding Preferences” on page 8-17

Downloading Results from Server to Client

When you run a verification on a PolySpace server, the PolySpace software
stores the results on the PolySpace server. To view your results, download the
results file from the server to the client.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

To download verification results to your client system:

1 Double-click the PolySpace Spooler icon.

The PolySpace Queue Manager Interface opens.

Opening Verification Results

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_project’, ange running 008, "

Note The PolySpace Queue Manager is not available on UNIX or Linux
systems. If you are using the PolySpace Client for C/C++ on a UNIX or
Linux system, you must use the psqueue-download command to download
your results. For information, see “Downloading Server Results to UNIX or
Linux Clients” on page 8-11.

2 Right-click the job that you want to view. From the context menu, select
Download Results .

Note To remove the job from the queue after downloading your results,
from the context menu, select Download Results And Remove From
Queue .

The Browse For Folder dialog box opens.

8-9

8 Reviewing Verification Results

8-10

Directory where ko store the results

123 Perl ;I
=) PolySpace
=l 153 polyspace_project
I includes J
I resulks
I sources
I3 PalySpace_Results -
Folder: I results

Make Mew Faolder | (o] 4 I Cancel |

4

3 Select the folder into which you want to download results.
4 Click OK to download the results and close the dialog box.

When the download is complete, a dialog box opens asking if you want to
open the PolySpace Viewer.

Queston X

Downlaad completed, Da you wank ko open PalvSpace Yiewer 7

Yes Mo |

5 Click Yes to open the results.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

Opening Verification Results

Downloading Server Results to UNIX or Linux Clients

If you are using PolySpace Client for on a UNIX or Linux system, the Queue
Manager interface is not available. To download results from the PolySpace
Server, you must use the psqueue-download command to download your
results.

To download your results, enter the following command:

<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-download <id>
<results dir>

The verification <id> is downloaded into the results directory <results dir>.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

The psqueue-download ccmmand has the following options:

e [-f] force download (without interactivity)
® -admin -p <password> allows administrator to download results.
e [-server <name>[:port]] selects a specific Queue Manager.

® [-v]|version] gives release number.

Note When downloading a unit-by-unit verification group, all the unit
results are downloaded and a summary of the download status for each unit
1s displayed.

For more information on managing verification jobs from the command line,
see “Managing Verifications in Batch” on page 6-27.

8-11

8 Reviewing Verification Results

Downloading Results from Unit-by-Unit Verifications

If you run a unit-by-unit verification, each source file in sent to PolySpace
Server individually. The queue manager displays a job for the full verification
group, as well as jobs for each unit (using a tree structure).

You can download and view verification results for the entire project, or for
individual units.

To download the results from unit-by-unit verifications:
¢ To download results for an individual unit, right-click the job for that unit,

then select Download Results.

The individual results are downloaded and can be viewed as any other
verification results.

¢ To download results for a verification group, right-click the group job, then
select Download Results.

The results for all unit verifications are downloaded, as well as an HTML
summary of results for the entire verification group.

Opening Verification Results
Use the PolySpace Viewer to review the results of your verification.

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

To open the verification results:

1 Double-click the PolySpace Viewer icon.

2 Select File > Open.

8-12

Opening Verification Results

3 In Please select a file dialog box, select the results file that you want
to view.

4 Click Open.

The results appear in the Viewer window.
Exploring the Viewer Window
® “Overview” on page 8-13

® “Procedural Entities View” on page 8-15

Overview
The PolySpace Viewer looks like the following graphic.

8-13

8 Reviewing Verification Results

Coding review progress view Selected check view

-Poly'Space Yiewer - C:\polysglace_projectiresults'RTE_px_02_Example_Project_LAS

-loix]

Fil= Edit ‘Windows Help
£
J 5 BH| = o | <8 & 9 i J N-SHR: QJ & ﬂﬁ “Undefined - G assistant
JIRauiewadfilteroff vl| xX |2 e ||onn| zZov |,gg§, gﬁ?tllnp |COR ow | IR SHF |°{‘r{g,|ulp TLORT AT NTC KNTG
Coding review progress Court Pr... 4 Mo check currently selected
Mo check selected hia hia A|
b reviesved I nb to reviesy (nfa) iz =]
J|oftware reliabiity indicator hia nia LI [} a'

Procedural entities

4
p [variables Yie I=l|{EEICall Tree Yie al

4
L
Example_Project

B polyspace_stdst

|$—4pol\rspace7main.c

Iﬁ—examp\e.c

E—_polyspace_stdstubs.c

Miritten by 4 & Both
Read by 3

i Called by 4
iritten by task 1|

" calls »
Read by task 113

[~ complete

Potentially Written by

[¥ Update on selection
Potertially Read by

K| [}
B [=10l x|
4 | |
Procedural Variables Source code Call tree
entities view view view view

The appearance of the Viewer toolbar depends on the Viewer mode. By
default, you see the expert mode toolbar.

g : N'SHRJ' '5'{5 imf JIUE-ErdEf YI- {ﬂ?Aasistantl

NIV ZCAL NIV FLOAT
o QBRI ZDM) Beg) gopp | PP COR) IRV SHE | ap o HIP e RERT

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The
following table describes these views.

8-14

Opening Verification Results

This View...

Displays...

Procedural entities view (lower left)

List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right)

Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right)

Details about the selected check

Variables view

Information about global variables
declared in the source code

Call tree view

Tree structure of function calls

You can resize or hide any of these sections.

Procedural Entities View

The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)
view. The procedural entities view looks like the following graphic.

Procedural entities M ~

Lime|...| &

Details

B~ - N EEEE
f--__pohyspacs_main.c

-j---—x: nple.c

0 | pohyspace_main.c
T8 fexample.c

stast...

95 | pohyspace

The file example.c is red because its has a run-time error. PolySpace software
assigns to a file the color of the most severe error found in that file. The first
column of the table is the procedural entity (the file or function). The following
table describes some of the other columns in the procedural entities view.

8-15

8 Reviewing Verification Results

8-16

Column Indicates

Heading

| - I Number of red checks (operations where an error always
- occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

e | | | 1|1

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

Note You can select which columns appear in the procedural entities view
by editing the preferences. To learn how to add a Reviewed column, see
“Making the Reviewed Column Visible” on page 8-34.

What you select in the procedural entities view determines what you see in
the other views. In the examples in this chapter, you learn how to use the
views and how they interact.

Selecting Viewer Mode
You can review verification results in expert mode or assistant mode:

® In expert mode, you decide how you review the results.

¢ In assistant mode, PolySpace software guides you through the results.

Opening Verification Results

You switch from one mode to the other by clicking the appropriate button
in the Viewer toolbar.

G pesistant

~'§.'." Expert

Setting Character Encoding Preferences

If the source files that you want to verify are created on an operating system
that uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on
an operating system that uses different character encoding than your current
system.

To set the character encoding for a source file:

1 In the Viewer, select Edit > Preferences .

The Preferences PolySpace Viewer dialog box opens.

2 Select the Character encoding tab.

8-17

8 Reviewing Verification Results

5 PolySpace View

Tools Menu || Takle options || Toolbars options || Miscellaneous | Assistant configuration |; Character encodir
Specifies the character encoding used by the operating system on which the source file was created.
Thiz allowws you to view source files created on an operating system that uses different character encoding than the current system.
*ou can choose your character encoding with a double click on the wanted one in the following list.

Wiethamese (Aindows) eindows-1258)

16-bits UCS Transformation Format, byte order identified by an optional byte-order mark (UTF-16)
16-bits Unicode (or UCS) Transformation Format, little-endian byte order [x-LUTF-16LE-BCM)
16-hits Unicode Transformation Format, big-endian byte order [UTF-16EE)
16-hits Unicode Transformation Format, little-endian byte order [UTF-16LE)
G-hits UCS Transformation Format [UTF-5)
American Standard Code for Information Interchange [US-85C0)
Arabic (Aindows) [wwincdovys-1256)
Baltic: (Windowes) [wvindowys-1257)
Chinese (Simplified) [GEK)
Chinese (Simplified) PRC standard (GEG0E0)
Chinese (Simplified), EUC encoding, GB2312 [x-EC-CH)
Chinese (Traditional) [Bigs)
Chinese (Traditional) (Windows) [x-wyincowes-9500
Chinese (Traditional) with Hong Kong extensions [Bigs-HKECE)
Chinese (Traditional) with Hong Kong extensions (Aindovws) [x-MZ950-HKSCE)
Chinese (Tracltional), EUC encoding, CMS11643 (Plane 1-3) [x-ELIC-TVw)
Cyrillic for QAIndowes) [wvindowys-12517
Eastern European (Mindows) [wwinclovys-1250)
Greek (Windows) [wvindowy s-1253)
Hehrew (Windows) [weincdoves-1255)
Indic scripts [x-1SCN91)
Japanese WAndows) [wvincdonnes-31f)
Japanese with halfwicdth Katakana (Windows 150 2022) Ce-windows-50221)
[Reset to default character encoding: Japanese, Shift-JIS (Shift_JIS)]
Hote: “'ou must restart the Viewer to use the new character encoding settings.

’ Ok] ’ Apply] ’ Cancel]

3 Select the character encoding used by the operating system on which the
source file was created.

4 Click OK.

5 Close and restart the Viewer to use the new character encoding settings.

8-18

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...
“What Is Assistant Mode?” on page 8-19

“Switching to Assistant Mode” on page 8-19

“Selecting the Methodology and Criterion Level” on page 8-20
“Exploring Methodology for C” on page 8-21

“Defining a Custom Methodology” on page 8-23

“Reviewing Checks” on page 8-24

“Saving Review Comments” on page 8-26

What Is Assistant Mode?

In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
in this order:

1 All red checks
2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks, according to the methodology and criterion level that you
select

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 8-20.

Switching to Assistant Mode

If the Viewer is in assistant mode, the mode toggle button is Expert. If the
Viewer is in expert mode, the mode toggle button is Assistant. To switch
from expert mode to assistant mode:

. . G Assistant
® (Click the Viewer mode button

The Viewer window toolbar displays controls specific to assistant mode.

8-19

8 Reviewing Verification Results

JIMethndnlngy for Model Based Designedj r— |_ Skip gray chechks 4 <§ '@}' §> [
1 2 a

The controls for assistant mode include:

A menu to select the review methodology for orange checks.

A slider to select the criterion level within that methodology.

A check box for omitting gray checks.

® Arrows for navigating through the reviews.

Selecting the Methodology and Criterion Level

A methodology is a named configuration set that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology has
three criterion levels. Each level specifies the number of orange checks for a
given category. The levels correspond to different development phases that
have different review requirements. To select a methodology and level:

1 From the methodology menu, select Methodology for C.

ethodalogy for C LI
Methodaology for Ada

Methodaology for ©
Methodaology for C++
Methodalogy for Model Based Designed

2 Select the appropriate level on the level slider.

J—

1 2 3

For the configuration Methodology for C, this table describes the three

levels.
Level Description
1 Fresh code

8-20

Reviewing Results in Assistant Mode

Level Description
2 Unit tested code
3 Code Review

These three levels correspond to phases of the development process.

Exploring Methodology for C

A methodology defines the number of orange checks that you review in
assistant mode. Each methodology has three criterion levels that specify
increasing levels of review. These levels correspond to different development
phases that have different review requirements.

Note You cannot change the parameters defined in the Methodology for C,
but you can create your own custom methodologies.

To examine the configuration for Methodology for C:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.
2 Select the Assistant configuration tab.

You see the configuration for Methodology for C.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

8-21

8 Reviewing Verification Results

8-22

ameous | Assistant configuration i

~Mumber of checks to review:

Criterion 1 Criterion 2 Criterion 3
CComman
il 3 20 AL
P 10 S0 AL
S-O%FL |10 =0 AL
CoR 10 10
PChay = 10 AL
Pl l 10
F-oFL 2 10 20
ASRT 5 20
0 & CH+ only
CE&| 10 20 AL
SHF 3 10 AL
P 10 20
P 10 20
i anly
IR = 20 AL
4+ anly 1

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

Reviewing Results in Assistant Mode

Configuration set

hethodalogy for C

Review threzhaold criterion
Criterian 1
Criterion 2

Criterion 3

Fresh code

it tested

Code reviesny

The table describes the criterion names for the configuration Methodology

for C.
Criterion Name in the Tooltip
1 Fresh code
2 Unit tested
3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Defining a Custom Methodology

A methodology defines the number of orange checks that you review in
assistant mode. You cannot change the predefined methodologies, such as
Methodology for C, but you can define your own methodology.

To define a custom methodology:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.

2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

8-23

8 Reviewing Verification Results

8-24

—Configuration set

Acld 2 set =

hethodalogy for Ads

methodalogy for C

__fhﬂethu:udculng':.f for C++

Methodology for Model Based Design

The Create a new set dialog box opens.
i

@ Enter the name of the sek wou are creating.
Enter I Zancel |

4 Enter a name for the new configuration set, then click Enter.
5 Enter the number of checks to review for each type, and each criterion level.

6 Click OK to save the methodology and close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds.

2 All blocks of gray checks (the first check in each unreachable function).

Note You can omit gray checks. In the toolbar, select the Skip gray
checks check box.

Reviewing Results in Assistant Mode

3 Orange checks, according to the methodology and criterion level that you
select.

To navigate through these checks:

1 Click the forward arrow

® The procedural entities view (lower left), expands to show the current

check.
Procedural entities
ﬁ Example_Project
H-__pohyspace_mainc
[H-=xample.c
[+
[H--Mon_Infinite_Loop
- Fointar_Anthmatic
H-RTE ()
. <" IR
. +F IR
g IRV 2
...... i -
[+
G-FRecursion_zals

¢ The source code view (lower right) displays the source code for this check.

¢ The current check view (upper right) displays information about this
check.

Note You can display the call sequence and track review progress. See
“Reviewing Results in Expert Mode” on page 8-27.

2 Review the current check.

8-25

8 Reviewing Verification Results

8-26

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box opens asking if you want to start again
from the first check.

Wrapping search El
@ End of the set of checks under review,
Do wou want o start again From the first check?

o |

4 Click No.

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

Reviewing Results in Expert Mode

Reviewing Results in Expert Mode

In this section...
“What Is Expert Mode?” on page 8-27

“Switching to Expert Mode” on page 8-27

“Selecting a Check to Review” on page 8-28

“Displaying the Call Sequence for a Check” on page 8-31
“Displaying the Access Sequence for Variables” on page 8-31
“Tracking Review Progress” on page 8-32

“Making the Reviewed Column Visible” on page 8-34
“Filtering Checks” on page 8-37

“Types of Filters” on page 8-37

“Creating a Custom Filter” on page 8-39

“Saving Review Comments” on page 8-40

What Is Expert Mode?

In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode
If the Viewer is in expert mode, the mode toggle button is Assistant. If the

Viewer is in assistant mode, the mode toggle button is Expert. To switch
from assistant to expert mode:
® (Click the Viewer mode button:

~'§.'.‘ Expert

The Viewer window toolbar displays buttons and menus specific to expert
mode.

8-27

8 Reviewing Verification Results

8-28

Selecting a Check to Review
To review a check in expert mode:

1 In the procedural entities section of the window, expand any file containing
checks.

2 Expand the procedure containing the check that you want to review.

You see a color-coded list of the checks:

----- W OWFL.25
..... o UMFL.25

Each item in the list of checks has an acronym that identifies the type
of check and a number. For example, IDP.9, IDP stands for Illegal
Dereferenced Pointer.

For more information about different types of checks, see “Check
Descriptions”in the PolySpace Products for C Reference.

3 Click the check that you want to review.

The source code view displays the section of source code where this error
occurs.

Reviewing Results in Expert Mode

9z
93
94
95
96
a7
a3
99
loa
101
oz
103
104
105
log
107
103
log
110

4 Place your cursor over any colored check in the code.

B example.c

int i, ¥p = array;

for{i = 0; i < 100; i++)

if{get bus= =status=()] > 0)
{
if(get oil pressure(] > 0]

{
*_p = L /¥ ut of bounds */

A tooltip provides ranges for variables, operands, function parameters,
and return values.

8-29

8 Reviewing Verification Results

Q2 int i, *p = array:

93

94 for{i = 0; i < 100; i++)

a5 {

=1 po=

a7 p++:

98 1

99

100 if(get bus ztatus() > 0]

101 ! & returned value of get_bus_status (int 32): fullrange [-231 . 231-1]
10z ILTOEC ULl _PLESSULEL] = o)

105 i

104 Fp o= 52 f* Out of bounds */
105 1

106 el=e

107 {

108 it

109 1

110 1

5 In the code, click the red check.

You see a message box that describes the error.

|in "sxample.c” ling 104 column 10
Source code :

IErTu:ur : pointer iz outside its bounds

8-30

Reviewing Results in Expert Mode

Example_Project - Call graph for check example.c Pointer_Ari - |EI|5|

Example_Project - Call graph for check example.c Pointer_Arithmetic, IDP.9

Displaying the Call Sequence for a Check

You can display the call sequence that leads to the code associated with a
check. To see the call sequence for a check:

1 In the procedural entities window, expand the procedure containing the
check that you want to review.

2 Select the check that you want to review.

E
3 In the toolbar, click the error call graph button. Q

A window displays the call graph.

100% -)I +
1

Y

mair

polyspace_main.c example.c example.c example.c

O O O

RTE Pointer _Arithmetic IDF.2

The call graph displays the code associated with the check.

Displaying the Access Sequence for Variables

You can display the access sequence for any variable that is read or written
in the code.

To see the access graph:

8-31

8 Reviewing Verification Results

8-32

1 Select the Variables view.

2 Select the variable that you want to view.
%
3 In the toolbar, click the call graph button.

A window displays the access graph.

New_Project - Access graph for single_file_analysis.c vO

137% -)I

Mew_Project - Access graph for single_file_analysis.c v0 I

single_file_analysis.c

o

vO READ

main.c single_file_analysis.c single_file_analysis.c
main generic_validation functional_ranges

single_file_analysis.c

oy

vO WRITE

The access graph displays the read and write access for the variable.

Tracking Review Progress

You can keep track of the checks that you have reviewed by marking them. To

mark that you have reviewed a check:

Reviewing Results in Expert Mode

1 Expand the procedure containing the check that you want to review.

2 Click the check that you want to review.

In the upper-left part of the window, you see a table with statistics about
the review progress for that category and severity of error.

Coding review progress Count | Progress :
finum IDP reviewed / num IDP to review (Red) |0/1]
linum reviewed | num to review (Red) 0,5]

Software reliability indicator 113/230 49

.]

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to total checks that have the color and category of the current check. In

this example, the first row displays the ratio of reviewed red IDP checks to

total red IDP errors in the project.

The second row displays the ratio of reviewed checks to total checks that

have the color of the current check. In this example, this is the ratio of red
errors reviewed to total red errors in the project. The third row displays the
ratio of the number of green checks to the total number of checks, providing

an indicator of the reliability of the software.

In the upper-right part of the Viewer window, you see information about

the current check.

example.c / Pointer_Arithmetic /line 104 / column 10

¥p = 5r /% Jut of bounds */

¥ @FNO - Fix now

rror @ pointer is outside its bounds

3 In the comment box, enter your comments.

4 Select the check box to indicate that you have reviewed this check.

8-33

8 Reviewing Verification Results

8-34

The software updates the ratios of errors reviewed to total errors in the
Coding review progress part of the window..

Coding review progress Count | Progress
finum IDP reviewed / num IDP to review (Red) |1/1 100
(inum reviewed / num to review (Red) 1/5 20
Software reliability indicator 113/230 45

Making the Reviewed Column Visible

You can change the PolySpace Viewer preferences so that the procedural
entities part of the window displays a Reviewed column.

1 Select Edit > Preferences.

2 Select the Table options tab.

3 Under Display columns in RTE view, select the Reviewed check box.

Now the Table options tab looks like the following figure.

Reviewing Results in Expert Mode

HPrEferences PolySpace Yiewer

Tools Wenu Takle options | Toolbars Dptiu:unsl hizcellansous

~Dizplay columnz in BTE wiew

v Gray

v Qrange

v Green

IV Lire

v Calurnt

¥ Tatal Selectivity

¥ Detailz

|- Camments

~Dizplay columns ariable

[¥ M read

[+ Mo write

v Wiiting Tasks
v Reading Tasks
[+ Protection

| Uzage

¥ Line

I+ Colurn

[File

v Detailed Type

v walues

4 Click OK to apply the preference and close the dialog box.

In the Procedural entities view, you see a column of check boxes.

8-35

8 Reviewing Verification Results

8-36

Procedural entites | & | 3| 7| |Line|...| ® | Details |Reviewed
[Example_Froject BEEEE 8 r
F__pohyspace_main.c 1 0 | polyspace... I
E]--=xample.c 4 B |10 | 26 1 T3 miple.c |_
[-Close_Te_Zerc 3] 2| a7 (12|23 mple.c |
- Mon_Infinite_Loop 4 | 85 |11 | 100 example.c |
[Pointer_Arthmetic | 1 3 1 5| &9 (12|90 miple.c |_
..... OVFL.Z T %4 (23 lsr warish... |_
..... UMFL.3 T 54 (23 lar variab... |-
..... -! - 1 104 | 10 Error ; pointa... W
..... ¥ UNR.1f - 07| 8 unreachable | [T
..... W OVFL.13 1 108 | 11 Unreachable... |-
..... W UNFL.14 1 108 | 11 Unreschable..| [T
..... -+ UNFL.20 1| 114 | 18 lscalar wariab. .. O
..... -j WL 13 1 114 [18 [Warning : sc... I-
..... +F OVFLZ5 1| 118 |12 lar varab...| [
..... " UNFL.2E 1| 118 |12 ﬁ:larvariab... |

Tip If you do not see this column, resize Procedural entities so that you see

the column. Resize the column to see the Reviewed label.

Note Selecting a check box in the Reviewed column automatically:

¢ Selects the check box for that check in the current check view (upper-right

part of the window).

¢ Updates the counts in the coding review progress view (upper-left part

of the window).

Reviewing Results in Expert Mode

Filtering Checks

You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters.

The default filter is User def.

To filter checks, select a filter from the filter menu.

User def "I

Filter all
Alpha

User def

Beta
Zamma
Undefined

Types of Filters

There are three types of filters:

¢ “Individual Filters” on page 8-37
* “Composite Filters” on page 8-38
¢ “Custom Filters” on page 8-38

Individual Filters

You can use an individual filter to display or hide a given check category, such
as IDP. When a filter is enabled, you do not see that check category. For
example, when the IDP filter is enabled, you do not see IDP checks. When
the filter is disabled, you see that check category. For example, when the IDP
filter is disabled, you see IDP checks. You can also filter by check color. To
enable or disable an individual filter, click the toggle button for that filter on
the toolbar.

8-37

8 Reviewing Verification Results

8-38

Tip The tooltip for a filter button indicates to you what filter the button is
for and whether the filter is enabled or disabled.

Note When you filter a check category, you do see some red checks with
that category.

Composite Filters

Composite filters combine individual filters, allowing you to show or hide
groups of checks.

Use This Filter... To...

Alpha Show all checks

Beta Hide NIV, NIVL, NIP, Scalar OVFL,
and Float OVFL checks

Gamma Show red and gray checks

User def Hide checks as defined in a custom
filter that you can modify

Custom Filters

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks, as shown in the following figure.

W E CALLs .
NS J o JIUserdEf ~| P assistant

I I NIV ZCAL I I I I NIV I FLOAT I
OBAL - ZDM) 2eq quEp | IOP | COROf IRM o SHE o gpo] NIP O qup 0 AERT o WTC - KNTC | WTL o UWR -

LoR

To modify the custom filter, see “Creating a Custom Filter” on page 8-39.

Reviewing Results in Expert Mode

Creating a Custom Filter

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def.

To modify the custom filter:

2 Select Edit > Custom filters.

1 From the composite filters menu, select User def.

The Custom filter setup dialog box opens.

=Custom filter setup - PolySpace Viewer

Select the checks or colors to hide when the custom filter is set.

~Check Filter

I Dut of Bound Array Index Checks

I~ Zero Division Checks

¥ Mon-Initizlized Local Variable Checks

I~ Scalar Overflow Checks

[¥ Ilegal Dereferenced Pointer Checks

[# Correctness Condition Checks

W Initislized Returned Value Checks

[shift Amount out of Bounds or Left Operand of Left Shift Checks
¥ Mon-Initizlized Variable Checks

¥ Mon-Initizlized Pointer Checks

[~ Float Overflow Checks

[~ User Assertion Checks

I~ Unknown Mon-Termination of Call Checks

™ Known Non-Termination of Call Checks

[¥ MNon-Termination of Loop Checks

[~ Unreachable Code Checks

[value On Assigned {only displayed, not counted)

~Color Filter

I~ Gray Checks

I~ Orange Checks

[~ Green Checks

[~ Errors in non executable procedures

[~ Orange not containing additional information

Float [Scalar Filters
[Float Checks
™ Scalar Checks

Variable Type Filters

I~ Mon-shared Variables

Ok

Apply

Cancel

3 Clear the filters for the checks that you want to display. For example, if

you clear the Out of Bound Array Index Checks box, you see the OBAI

checks.

8-39

8 Reviewing Verification Results

8-40

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.

5 Click OK to apply the changes and close the dialog box.

PolySpace software saves the custom filter definition in the Viewer
preferences.

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

Importing and Exporting Review Comments

Importing and Exporting Review Comments

In this section...

“Reusing Review Comments” on page 8-41
“Exporting Review Comments to Other Verification Results” on page 8-41

“Importing Review Comments from Previous Verifications” on page 8-42

Reusing Review Comments

After you have reviewed verification results on a module, you can reuse your
review comments with subsequent verifications of the same module. This
allows you to avoid reviewing the same check twice, or to compare results
over time.

The PolySpace Viewer allows you to either:

¢ Export review comments from the current results to another set of results.

® Import review comments from another set of results into the current
results.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

Exporting Review Comments to Other Verification
Results

After you have reviewed verification results, you can export your review
comments for use with other verifications of the same module, allowing you to
avoid reviewing the same check twice.

Caution The comments you export replace any existing comments in the
selected results.

8-41

8 Reviewing Verification Results

8-42

To export review comments to other verification results:

1 Select File > Export checks and comments.
2 Navigate to the folder containing the other results file.
3 Select the results (.RTE) file, then click Open.

The review comments from the current results are exported into the
selected results.

Note If the code has changed between the two verifications, the exported
comments may not be applicable to the other results. For example, the
justification for an orange check may no longer be relevant to the current code.

Importing Review Comments from Previous
Verifications

If you have previously reviewed verification results for a module and saved
your comments, you can import those comments into the current verification,
allowing you to avoid reviewing the same check twice.

Caution The comments you import replace any existing comments in the
current results.

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.
2 Select File > Import checks and comments.

3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Importing and Exporting Review Comments

Once you import checks and comments, the go to next check 4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check b icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

8-43

8 Reviewing Verification Results

8-44

Generating Reports of Verification Results

In this section...

“PolySpace Report Generator Overview” on page 8-44
“Generating Verification Reports” on page 8-45
“Automatically Generating Verification Reports” on page 8-46

“Generating Excel Reports” on page 8-47

PolySpace Report Generator Overview

The PolySpace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The PolySpace Report Generator provides the following report templates:

Coding Rules Report — Provides information about compliance with
MISRA-C Coding Rules, as well as PolySpace configuration settings for
the verification.

Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
PolySpace configuration settings for the verification.

Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and PolySpace configuration settings for
the verification.

The PolySpace Report Generator allows you to generate verification reports in
the following formats:

HTML
PDF
RTF

Generating Reports of Verification Results

e Microsoft® Word
e XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

Generating Verification Reports
You can generate reports for any verification results using the PolySpace
Report Generator.

To generate a verification report:

1 In the Viewer, open your verification results.
2 Select Reports > Run Report.

The Run Report dialog box opens.

8-45

8 Reviewing Verification Results

8-46

Run Report

—Select Report Template

Ci\PolySpace\PolySpace_Common'ReportGeneratoritemplates \CodingRules. rpt
:\PolySpace\PolySpace_Common'ReportGeneratoritemplates\Developer.rpt
Ci\PolySpace\PolySpace_Common'ReportGeneratoritemplates\Developer_WithGreenChecks.rpt
Ci\PolySpace\PolySpace_Common'ReportGeneratoritemplates\Quality.rpt

Browse... |

~Select Report Format
Qutput folder IC: \PolySpace'polyspace_projectiresults\PolySpace-Doc . |
Qutput format |PDF -

Fun Report | Cancel

3 In the Select Report Template section, select the type of report that you
want to run.

4 Select the Output folder in which to save the report.
5 Select the Output format for the report.
6 Click Run Report.

The software creates the specified report.

Automatically Generating Verification Reports

You can specify that PolySpace software automatically generate reports for
each verification using an option in the Launcher .

To automatically generate reports for each verification:

1 In the Launcher, open your project.

Generating Reports of Verification Results

2 In the Analysis options section of the Launcher window, expand General.

You see the General options.
3 Select Report Generation.
4 Select the Report template name.
5 Select the Output format for the report.

6 Save your project.

Generating Excel Reports
You can also generate Microsoft Excel® reports of verification results.

Note Excel reports do not use the PolySpace Report Generator.

To generate an Excel report of your verification results:

1 In your results directory, navigate to the PolySpace-Doc folder. For
example:polypace_project\results\PolySpace-Doc.

The directory should have the following files:

Example_Project_Call_Tree.txt
Example_Project_RTE_View.txt
Example_Project_Variable_View.txt

Example Project-NON-SCALAR-TABLE-APPENDIX.ps
PolySpace_Macros.xl1s

The first three files correspond to the call tree, RTE, and variable views
in the PolySpace Viewer window.

2 Open the macros file PolySpace Macros.xls.
You see a security warning dialog box.

3 Click Enable Macros.

8-47

8 Reviewing Verification Results

8-48

A spreadsheet opens. The top part of the spreadsheet looks like the
following figure.

apply filkers? ——————— Generate checks by file?
& Mo filters & yes
" Beta filters ho

Hal n | Yse this button to create the complete synthesis in one file.
=elect the RTE expoart view and a file in which to save results.
If the other views are in the same directory as the RTE wiew
then they will automatically be incorporated into the same file.

Generate Poly=Space Results Synthesis

Hel n

4 Specify the report options that you want, then click Generate PolySpace

Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into
one report.

The Where is the PolySpace RTE View text file dialog box opens.

5 In Look in, navigate to the PolySpace-Doc folder in your results directory.

For example:polypace project\results\PolySpace-Doc.

6 Select Project_RTE_View.txt.

7 Click Open to close the dialog box.

The Where should I save the analysis file? dialog box opens.

8 Keep the default file name and file type.

9 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This
spreadsheet has several worksheets.

Generating Reports of Verification Results

:I Example_Project-Synthesis.xls

}||

Call Graph of ll tree

all tree
__poly=space_main.main
| - » ezample.RTE
| | - » example.Close_To Zero
||] » pet_stubs 0. random_ float
||] » pst_stubs 0. random_ float
|] » pst_stubs 0. .random_int
| | > exanple. Hon_Infinite Loop
| | - » ezxample.Pointer Arithmetic
| 1 | » pet_=stubs_0.g=et_bus =status
||] » exanple.get_oil pressure
||] » pst_stubs 0.get_bus status
| | - » example.Recursion_caller
| 1 | » pet_=stub=s_0.random_int
| | | - » ezample.Recursion
| | | | =% RecursiwveCall to exanple. Recursion:
||] » pet_stubs 0. .randomn_int
| | | - » example.Recursion

Already displaved abowve

» p=t_=tub=s 0.random_int
» example . Square_FRoot
» pet_=tub=s 0.random_float
— » example.Sguare_Root_conwv

» TeEtern.sgrt
» example . Unreachable Code
» pet_=tub=s 0.random_int

| » pet_stub=s_0.random_int
b [Application Call Tree / Shared Globals 4 Global Data Dictionary £ Checks by file

|
|
|] » Textern.cos
|
|

PR TR Y AU Y S U Y Y) R R Ry ey PR PR P) Y g

10 Select the Check Synthesis tab to view the worksheet showing statistics
by check category.

8-49

8 Reviewing Verification Results

B Example_Project-Synthesis.xls

&, B C|ID|E|F

1 RTE Statistics

2 | Check category Check detail R O Gy
3 |0BAI Out of Baunds Array Index 000
4 MWL Uninitialized Local Variable 012
5 |IDF llegal Dereference of Pointer (1 |1 |0
B [MIP Lninitialized Paointer 0o
7 M Lninitialized Yariable 0o
a8 |1 Initialized Yalue Returned 0o
g |COR Other Correctness Conditions 0 0 0
10 |ASET User Asgertion Failure 010
11 | PO FPower Must Be Positive 000
12 [Z0% Division by Zero 010
13 | SHF Shift Amount YYithin Bounds 0o
14 |CWFL Creerflow o2 \3
15 |LINFL Lnderfl o ono|3
16 |LIOWFL Underflow or Cverflow 030
17 |EXCP Arithrmetic Exceptions 000
18 |MTC Mon Termination of Call 300
19 |k-NTC Known Mon Termination of Call /0 0 0
20 |MTL Mon Termination of Loaop 000
21 |LUMRE Unreachable Code 0o
22 | LIMP Uncalled Procedure 0o
23 |IPT Inspection Point 000
24 |OTH other checks 0o
25 |ERC Exception handling 0on

8-50

Using PolySpace® Results

Using PolySpace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 8-51

“Red Checks Where Gray Checks were Expected” on page 8-52
“Using Range Information in the Viewer” on page 8-54

“Why Review Dead Code Checks” on page 8-60

“Reviewing Orange Checks” on page 8-61

“Integration Bug Tracking” on page 8-62

“How to Find Bugs in Unprotected Shared Data” on page 8-63
“Dataflow Verification” on page 8-63

“Data and Coding Rules” on page 8-64

“Potential Side Effect of a Red Error” on page 8-64

“Relationships Between Variables” on page 8-65

“Two Distinct Colors in a while/for Statement” on page 8-67

Review Runtime Errors: Fix Red Errors

All Runtime Errors highlighted by PolySpace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”
might be performed to give a result of -128.

This result is mathematically incorrect, and could have serious consequences
if, for example, the computation represents the altitude of a plane.

By default, PolySpace verification does not make assumptions about the way
you use a variable. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

8-51

8 Reviewing Verification Results

8-52

PolySpace verification identifies two kinds of red checks:

® Red errors which are compiler-dependant in a specific way. A PolySpace
option may be used to allow particular compiler specific behavior . An
example of a PolySpace option to permit compiler specific behavior is
the option to force “IN/OUT” ADA function parameters to be initialized.
Examples in C include options to deal with constant overflows, shift
operation on negative values, and so on.

® You must fix all other red errors. They are bugs.

Most of the bugs you find are easy to correct once the software identifies
them. PolySpace verification identifies bugs regardless of their consequence,
or how difficult they may be to correct.

Red Checks Where Gray Checks were Expected

By default, PolySpace continues verification when it finds a red error. This
1s used to deal with two primary circumstances:

® A red error appears in code which was expected to be dead code.

® A red error appears which was expected, but the verification is required
to continue.

PolySpace performs an upper approximation of variables. Consequently, it
may be true that PolySpace verifies a particular branch of code as though
it was accessible, despite the fact that it could never be reached during
“real life” execution. In the example below, there is an attempt to compare
elements in an array, and PolySpace is not able to conclude that the branch
was unreachable. PolySpace may conclude that an error is present in a line
of code, even when that code cannot be reached.

Consider the figure below.

Using PolySpace® Results

As a result of imprecision, each color shown can be approximated by a color
immediately above it in the grid. It is clear that green or red checks can be
approximated by orange ones, but the approximation of gray checks is less

obvious.

During PolySpace verification, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Gray code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

* by an empty superset;

* by a nonempty super set, members of which may generate checks of any
color.

And hence PolySpace cannot be guaranteed to find all dead code in a
verification.

However, there is no problem in having gray checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example:

if (condition) then action_producing_a_red;

8-53

8 Reviewing Verification Results

After the "if" statement, the only way execution can continue is if the condition
1s false; otherwise a red check would be produced. Therefore, after this
branch the condition is always false. For that reason, the code verification
continues, even with a specific error. Remember that this propagates values
throughout your application. None of the execution paths leading to a
run-time error will continue after the error and if the red check is a real
problem rather than an approximation of a gray check, then the verification
will not be representative of how the code will behave when the red error
has been addressed.

It is applicable on the current example:

1 int a[] = { 1,2,8,4,5,7,8,9,10 };

2 void main(void)

3 {

4 int x=0;

5 int tmp;

6 if (a[5] > a[6])

7 tmp =1 /x; // RED ERROR [scalar division by zero] in gray code
8}

Using Range Information in the Viewer

* “Viewing Range Information” on page 8-54
e “Interpreting Range Information” on page 8-55

¢ “Diagnosing Errors with Range Information” on page 8-57

Viewing Range Information

You can see range information associated with variables and operators within
the source code view. Place your cursor over an operator or variable. A tooltip
message displays the range information, if it is available.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

8-54

Using PolySpace® Results

If a line of code is entirely the same color, selecting (clicking) the line opens the
Expanded Source Code window. Place your cursor over the required operator
or variable in this window to view range information. In addition, you can
select the line in the Expanded Source Code window to display error or
warning messages (along with range information) in the selected check view.

In the source code view, if a line of code contains different colored checks, then

selecting a check displays the error or warning message along with range
information in the selected check view.

Interpreting Range Information

The software uses the following syntax to display range information of
variables:

name (data_type) : [min1 .. max1] or [min2 .. max2] or [min3 .. max3] or exact value

In the following example,

30 [

31 int tewmp;

32 PowgrLewvel = -10000;

33 variable 'PowerLevel (int 32): -10000
34 RTE b+

35

the tooltip message indicates the variable PowerLevel is a 32-bit integer
with the value —10000.

In the next example,

140
141 *depth = *depth + 1:
14Z2 ad{gnce = 1l.0f/({float) (*depth); % potential division by zero */

143 4"—

La4 variable 'advance’ (float 32): [-1.0001 .. -4.6566E 1% or [1.9999E2 .. 3.3334E Y

the tooltip message indicates that the variable advance is a 32-bit float that
lies between either —1.0001 and —4.6566E-10 or 1.9999E-2 and 3.3334E-1

8-55

8 Reviewing Verification Results

The tooltip message also indicates whether the variable occupies the full
range:

37

38 temp = read on, bus();
39 gwitch(ten
a0 :_p] returned value of read_on_bus (int 32): fullrange [-23‘1 . 231-1]

The tooltip message indicates that the returned value of the function
read_on_bus is a 32-bit integer that occupies the full range of the data type,
-2147483648 to 21474836417.

With operators, the software displays associated information. Consider the
following example:

Lo

5l atatic 332 new speedis3Z in, =28 ex_speed, ud c_speed)

Lz {

53 return [(in 9+ ((232)ex_speed + (232)c_speed] /2)7
54 ' operator f on type int 32

&L left: [-1701.. 3278]

56 static char re| right: 3 5]

£ | result: [-189 .. 364] o

The tooltip message for the division operator / indicates that the:

e Operation is performed on 32-bit integers
® Dividend (left) is a value between —1701 and 3276
¢ Divisor (right) is an exact value, 9

® Quotient (result) lies between —189 and 364

8-56

Using PolySpace® Results

Note You can run a passO (Software Safety Analysis level 0)
verification to produce results quickly. See “-from verification-phase” and “-to
verification-phase” in the PolySpace Products for C Reference Guide.
However, with a passO0 verification, the software generates range information
that is either a constant or full-range for the data type of the expression.

Diagnosing Errors with Range Information

You can use range information to diagnose errors. Consider the function
reset_temperature() in the following example:

8-57

8 Reviewing Verification Results

PolySpace Viewer - C:\CC-R2009b-V1\Examples\Demo C\RTE_px_ 02 Demo_C_LAST RESULTS.rte

File Edit Reports Windows Help

[ofa|«

sﬂﬂ.@ i .J-g-n-smx]-g-ﬂﬁ]m-@)ﬁslmml

J| X oo o TR L omm zow o MIYSERL e cor o me o osee o MEY wie THERT pmRT o WTC o RNTC. NTL - unR - wom
T T count [Pr...[] MNe check currently selected
Mo check selected nja__ |nja
num reviewed / num to review (n/a) n/a nfa
Isoftware reliability indicator nfa nfa - @I
I Procedural entities W[7| | Lne|..| 2 gl
|= = Noresd | Moot
- 4 1 90 jexsmple.c |5 pemo_c 2
1 5 jinitizlizatic initislisations.am B 2
2 1 % manc | liritten by A || g initisisations.cument_data z 2
2 1 91 single_file — p | inisisstions first_paioss o 2
1 0 |single_file F]-initizlizations, s2cond_paioad ° !
2| 5| 25 | 57|71 single_ie | Written by task | | G- nitsiiestions tsp 2 B
2 24 | 5T |T1 isingle_file [——, [[p | E-simabe_tie_anstysis.output_v1 o 2
2 25 57|71 single_file []-single_file_snalysis.output_ve ! ®
2 | 37 |12 |100jsingle_file |[Potentially Written by [-single_fie_anshysis.output_vT 3 z
40 | 7| |functonn T o | single_fie_ansiysie ssved_vsiss o B
4 |7 Function [f]--single_file_anatysis.v0 1 2
44 7| frunctonn f7--single_fie_snatysis.u1 3 2 =
FERRET function 1 4 | _’I_I
% |7 function 1 =
45 T function r
4|z 84 | 3|97 single_file
51| 11 |100/single_file
5| 56 |12 |100jsingle_fike
68 |12 [Error : am:
80 (13| |locsl varis
80 [13| |sealervar || 57 {
80 |12 isealar var || 58 int array[Z55-(54 * BEIN w3)]:
80 [18| |scslarvar || 59
8 |18 lsealar var || 60 return array[in w3-255] = 0;
137 | 11| 0 lsingle_sie || 81 i
3 1 90 fasksre || 62
2 1 o1 tasksze || B3
e o8| copses || 64 6 gEneric validavion(ss sxtrspolated speed, us computed speed)
65 {
4 | | EE R =

Demo_C

Source file: single_file_analysis.c

single_file_analysis.c Line: 56 Column: 12

Clicking the red check, OBAI.O in the Procedural entities view or [on line
60 in the source code view, displays an error message and range information
in the selected check view:

8-58

Using PolySpace® Results

1 single_file_analysis.c f reset_temperature [line 60 f column 12
H

+ return array[in_v3i-255] = 0;

r &

Error : array index is outside its bounds : [0..38]
array size: [0..38]
array index: [-255 .. -39]

The error message shows that the array size lies between 0 and 38 elements,
but the array index is negative, lying between —255 and —39.

Placing the cursor over in_v3 in the source code view shows the following:

57 f

La int array[255-(54 + BIN +3)]:

54

&l return array[in wi-2Z55] = 0;

&1 } variable 'in_v3' (unsigned int 8): [0 .. 218]

&2 conversion from unsigned int & to unsigned int 32

63 right: [0 .. 218]

4 28 generic _walj result: [0.. 216] ted speed)

&5 T conversion from unsigned int 32 toint32 [TTT 77777

66 f******t#***' rlght: [I:I v 216] MEEETFITETFTES
result: [0.. 216]

Although in_v3 is green (as a local variable), it is in the range 0 - 216. This
results in a negative index range. Moving the cursor to the beginning of the
function reveals the cause of the red check: the input argument is between 0
and 216:

55

L6 static char reset_tewperature(ud in v3)

7 ! ¶met&r in_v3 (unsigned int &): [0 .. 216]
L int array[255-(54 % BIN w3)]:

Lo

&l returh array[in wi-255] = 0:

6l 1

G2

8-59

8 Reviewing Verification Results

8-60

Why Review Dead Code Checks

¢ “Functional Bugs in Gray Code” on page 8-60

e “Structural Coverage” on page 8-61

Functional Bugs in Gray Code
PolySpace verification finds different types of dead code. Common examples

include:

¢ Defensive code which is never reached.

¢ Dead code due to a particular configuration.

¢ Libraries which are not used to their full extent in a particular context.
¢ Dead code resulting from bugs in the source code.

The causes of dead code listed in the following examples are taken from
critical applications of embedded software by PolySpace verification.

® A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

¢ Consider a line of code such as:
IF NOT a AND b OR ¢ AND d

Now consider how misplaced parentheses might influence how that line
behaves:

IF NOT (a AND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (a AND (b OR c) AND d)
® The test of variable inside a branch where the conditions are never met

® An unreachable “else” clause where the wrong variable is tested in the
“if” statement

e A variable that should be local to the file but instead is local to the function

¢ Wrong variable prototyping leading to a comparison which is always false
(say)

Using PolySpace® Results

As 1s the case for red errors, the consequences of dead code and how much
time you must spend on it is unpredictable. For example, it can be:

* A one-week effort of functional testing on target, trying to build a scenario
going into that branch.

® A three-minute code review discovering the bug.
Again, as for red errors, PolySpace does not measure the impact of dead code.

The tool provides a list of dead code. A short code review enables you to place
each entry from that list into one of the five categories from the beginning of
this chapter. Doing so identifies known dead code and uncovers real bugs.

Using PolySpaceshows that at least 30% of gray code reveals real bugs.

Structural Coverage

PolySpace software always performs upper approximations of all possible
executions. Therefore, if a line of code is shown in green, there is a possibility
that it is a dead portion of code. Because PolySpace verification makes an
upper approximation, it does not conclude that the code is dead, but it could
conclude that no run-time error is found.

PolySpace verification finds around 80% of dead code that the developer finds
by doing structural coverage.

Use PolySpace verification as a productivity aid in dead code detection. It
detects dead code which might take days of effort to find by any other means.

Reviewing Orange Checks

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

The number of orange checks you review is determined by several factors,
including:

¢ The stage of the development process

® Your quality objectives

8-61

8 Reviewing Verification Results

8-62

There are also actions you can take to reduce the number of orange checks
in your results.

For information on managing orange checks in your results, see Chapter 9,
“Managing Orange Checks”.

Integration Bug Tracking

By default, you can achieve integration bug tracking by applying the
selective orange methodology to integrated code. Each error category reveals
integration bugs, depending on the coding rules that you choose for the project.

For instance, consider a function that receives two unbounded integers. The
presence of an overflow can be checked only at integration phase because at
unit phase the first mathematical operation reveals an orange check.

Consider these two circumstances:

® When you carry out integration bug tracking in isolation, a selective
orange review highlights most integration bugs. A PolySpace verification is
performed integrating tasks.

® When you carry out integration bug tracking together with an exhaustive
orange review at unit phase, a PolySpace verification is performed on one
or more files.

In this second case, an exhaustive orange review already has been performed,
file by file. Therefore, at integration phase, assess only checks that have
turned from green to another color .

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This consequentially displays a green NIV check at the first read access to

a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks reveal integration bugs.

Using PolySpace® Results

How to Find Bugs in Unprotected Shared Data

Based on the list of entry points in a multi-task application, PolySpace
verification identifies a list of shared data and provides some information
about each entry:

® The data type.

e A list of read and write access to the data through functions and entry
points.

® The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent access when one task
can access it while another task is in the process of doing so. Consider all

the possible situations:

¢ A scenario which would lead to such a conflict for a particular variable;
then a bug exists and you must provide protection.

® No such scenarios; then one of the following explanations may apply:

= The compilation environment guarantees an atomic read/write access
on variables of type less than 1 or, 2 bytes. Therefore, all conflicts
concerning a particular variable type still guarantee the integrity of the
variables content. Be careful when you port the code.

The variable is protected by a critical section or a mutual temporal
exclusion. You may want to include this information in the PolySpace
launching parameters and reverify.

Consider checking whether variables are modified when they are supposed to
be constant. Use the variables dictionary.

Dataflow Verification

Data flow verification is often performed within certification processes —
typically in the avionic, aerospace, or transport markets.

This activity makes use of two features of PolySpace results, which are
available any time after the Control and Data Flow verification phase:

8-63

8 Reviewing Verification Results

8-64

e (Call tree computation

® Dictionary containing read/write access to global variables. (You can also
use this to build a database listing for each procedure, for its parameters,
and for its variables.)

PolySpace software can help you to build these results by extracting
information from both the call tree and the dictionary.

Data and Coding Rules

Data rules are design rules which dictate how modules and files interact
with each other.

Consider global variables. It is not always apparent which global variables
are produced by a given file, or which global variables are used by that file.
The excessive use of global variables can lead to design problems, such as:

¢ File APIs (or functions accessible from outside the file) with no procedure
parameters.

® The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and output values.

Potential Side Effect of a Red Error

When the software finds a red error, you can continue the verification but
proceed with caution. Consider this piece of code:

int *global_ptr; void other_function(void)
int variable_ it points_to;
{

void big_red(void)
{ if (condition==1)
int r;
int my_zero = 0; *global ptr = 12;
if (condition==1)

r=1/ my_zero; // red ZDV }

Using PolySpace® Results

// hundreds of lines
global_ptr = &variable_it_points_to;
other_function();

}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for verification,
and the propagation of the data ranges need several iterations (or integration
levels) to be complete. You can observe that effect by examining the color of
the checks upon completion of each of those levels.

¢ PolySpace detects gray code which exists due to a terminal RTE which is
not be flagged in red until a subsequent integration level.

® PolySpace flags an NTC in red with the content in gray. This red NTC is
the result of an imprecision; it should be gray.

Suppose that an NTC is hard to understand at a given integration level
(level 4):

e If other red checks exist at level 4, fix them and restart the verification

¢ QOtherwise, look through the results from each previous level to see whether
you can locate other red errors. If so, fix them and restart the verification

Relationships Between Variables

Abstract
A red error can hide a bug which occurred on previous lines.

8-65

8 Reviewing Verification Results

%% filel.c %% %% file2.c %%

1 void f(int); 1 #include <math.h>
2 int read_an_input(void); 2

3 3 void f(int a)

4 int main(void) 4 {

5 { 5 int tmp;

6 int x,o0ld_x; 6 tmp = sqrt(0-a);
7 7}

8 X = read_an_input();

9 old x = x;

10

11 if (x<0 || x>10)
12 return 0;

13

14 f(x);

Explanation 1
16 x =1 / old x; // division is red

e WHen 0ld_ x is assigned to x (file 1, line 9), PolySpace retains the following

intBrhation:

= x and 0ld_x are equivalent to the full range of an integer: [-2731 ;
2731-1].

= x and old_x are equal.

e After the if clause (file 1, line 11), X is equivalent to [0; 10]. Because x
and old_x are equal, 01d_x is equivalent to [0;10] as well. Otherwise
the return statement is executed.

® When X is passed to "f" (file 1, line 14), the only possible conclusion for
sqrt is that x=0. All other values lead to a run-time exception (file 2, line
6) tmp = sqrtt(0 a);.

¢ A red error occurs (file 1, line 16) because x and old_x are equal, therefore
old_x = 0.

8-66

Using PolySpace® Results

Explanation 2

® Suppose that PolySpace exits immediately when encountering a run-time
error. Introduce a print statement that writes to the standard output after
the "f" procedure is called (file 1, line 14), to show the current value of x
and old_x.

® The only way the program can reach the print statement is when X =
0. So, if X=0, 01d_x must also have been assigned to 0, which makes the
division red.

Summary

PolySpace builds relationships between variables and propagates the
consequence of these relationships backwards and forwards.

Two Distinct Colors in a while/for Statement

Inside the condition of a loop, a check might be green then red.

Consider the following example.

1 void main(void)

2 A

3 int tab[2] = { 1, 2 };

4 int index = 0;

5 while (tab[index]) { index--; }

/] the colour of "array index within bounds" is
[/ first green

// then red

6 }

In the Viewer, if you click the tab variable (line 5), you see:

Error : array index is outside its bounds : [0..1]
array index is within bounds : [0..1]
local variable is initialized (type: int 32)

Unreachable check : not initialized local variable error (type:

Now, visualize the C loop transformed into a label and a goto

int 32)

8-67

8 Reviewing Verification Results

if (not(tab[index]) goto end;

// first location of the check is green
loop _begin:

index = index-1;

if (tab[index]) goto loop_begin;

/] second location of the check is red
end:

In the example, the second color represents the second pass through the loop,
and you should investigate.

8-68

Managing Orange Checks

¢ “Understanding Orange Checks” on page 9-2

¢ “Too Many Orange Checks?” on page 9-9

¢ “Reducing Orange Checks in Your Results” on page 9-11
¢ “Reviewing Orange Checks” on page 9-29

® “Automatically Testing Orange Code” on page 9-38

9 Managing Orange Checks

9-2

Understanding Orange Checks

In this section...

“What is an Orange Check?” on page 9-2
“Sources of Orange Checks” on page 9-6

What is an Orange Check?

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

PolySpace verification does not try to find bugs, it attempts to prove the
absence or existence of run time errors. Therefore, all code starts out as
unproven prior to verification. The verification then attempts to prove that
the code is either correct (green), is certain to fail (red), or is unreachable
(gray). Any remaining code stays unproven (orange).

Code often remains unproven in situations where some paths fail while others
succeed. For example, consider the following instruction:

X =1/ (X-Y);
Does a division-by-zero error occur?
The answer clearly depends on the values of X and Y. However, there are an

almost infinite number of possible values. Creating test cases for all possible
values is not practical.

Understanding Orange Checks

X =Y (Division by zero error)

x-+—— Actual states of operation
X X X/ (X-Y)
X (nearly infinite)

Although it is not possible to test every value for each variable, the target
computer and programming language provide limits on the possible values of
the variables. PolySpace verification uses these limits to compute a cloud of

points (upper-bounded convex polyhedron) that contains all possible states
for the variables.

Y% Convex polyhedron
containing all possible
states of

X/ (X-Y)

9 Managing Orange Checks

PolySpace verification than compares the data set represented by this
polyhedron to the error zone. If the two data sets intersect, the check is
orange.

Intersection means

X =Y (Division by zero error)

*— Operation: X/ (X-Y)

X

Graphical Representation of an Orange Check

Understanding Orange Checks

A true orange check represents a situation where some paths fail while
others succeed. However, because the data set used in the verification is an
approximation of actual values, an orange check may actually represent a
check of any other color, as shown below.

Y

Y

Red approximated by orange Gray approximated by orange

-
-

-
o

Green approximated by orange Any other situation (true orange)

PolySpace reports an orange check any time the two data sets intersect,
regardless of the actual values. Therefore, you may find orange checks that
represent bugs, while other orange checks represent code that is safe.

You can resolve some of these orange checks by increasing the precision of
your verification, or by adding execution context, but often you must review
the results to determine the source of an orange check.

9 Managing Orange Checks

9-6

Sources of Orange Checks

Orange checks can be caused by any of the following:

Potential bug

Inconclusive check

Data set issue

® Basic imprecision

Bugs can be revealed by any of these categories except for basic imprecision.

Potential Bug

An orange check can reveal code which will fail under some circumstances.
These types of orange checks often represent real bugs.

For example, consider a function Recursion():

® Recursion() takes a parameter, increments it, then divides by it.
® This sequence of actions loops through an indirect recursive call to
Recursion_recurse().

If the initial value passed to Recursion() is negative, then the recursive
loop will at some point attempt a division by zero. Therefore, the division
operation causes an orange ZDV.

Inconclusive Verification

An orange check can be caused by situations in which the verification is
unable to conclude whether a problem exists.

In some code, it is impossible to conclude whether an error exists without
additional information.

For example, consider a variable X, and two concurrent tasks T1 and T2.

e X is initialized to 0.

® T1 assigns the value 12 to X.

Understanding Orange Checks

e T2 divides a local variable by X.

® A division by zero error is possible because T1 can be started before or after
T2, so the division causes an orange ZDV.

The verification cannot determine if an error will occur unless you define
the call sequence.

Most inconclusive orange checks take some time to investigate. An
inconclusive orange check often results from complex code structure.
Sometimes, such situations take an hour or more to understand. You may
want to recode to ensure there is no risk, depending on the criticality of the
function and the required speed of execution.

Data Set Issue

An orange check can result from a theoretical set of data that cannot actually
occur.

PolySpace verification uses an upper approximation of the data set, meaning
that it considers all combinations of input data rather than any particular
combination. Therefore, an orange check may result from a combination of
input values that is not possible at execution time.

For example, consider three variables X, Y, and Z:

e Each of these variables is defined as being between 1 and 1,000.

® The code computes X*Y*Z on a 16-bit data type.

® The result can potentially overflow, so it causes an orange OVFL.

When developing the code, you may know that the three variables cannot all

take the value 1,000 at the same time, but this information is not available to
the verification. Therefore, the multiplication is orange.

When an orange check is caused by a data set issue, it is usually possible
to identify the cause quickly. After identifying a data set issue, you may
want to comment the code to flag the warning, or modify the code to take
the constraints into account.

9-7

9 Managing Orange Checks

9-8

Basic Imprecision

An orange check can be caused by imprecise approximation of the data set
used for verification.

For example, consider a variable X:

e Before the function call, X is defined as having the following values:
-5, -3, 8, or any value in range [10...20].
This means that 0 has been excluded from the set of possible values for X.

e However, due to optimization at low precision levels (-00), the verification
approximates X in the range [-5...20], instead of the previous set of
values.

® Therefore, calling the function x = 1/x causes an orange ZDV.

PolySpace verification is unable to prove the absence of a run-time error in
this case.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
verification cannot help directly. You need to review the code to determine if
there is an actual problem.

For more information, see and “Approximations Used During Verification”in
the PolySpace Products for C Reference.

Too Many Orange Checks?

Too Many Orange Checks?

In this section...

“Do I Have Too Many Orange Checks?” on page 9-9
“How to Manage Orange Checks” on page 9-10

Do | Have Too Many Orange Checks?

If the goal of cotde verification is to prove the absence of run time errors, you
may be concerned by the number of orange checks (unproven code) in your
results.

In reality, asking “Do I have too many orange checks?” is not the right
question. There is not an ideal number of orange checks that applies for
all applications, not even zero. Whether you have too many orange checks
depends on:

¢ Development Stage — Early in the development cycle, when verifying
the first version of a software component, a developer may want to focus
exclusively on finding red errors, and not consider orange checks. As
development of the same component progresses, however, the developer
may want to focus more on orange checks.

¢ Application Requirements — There are actions you can take during
coding to produce more provable code. However, writing provable code
often involves compromises with code size, code speed, and portability.
Depending on the requirements of your application, you may decide to
optimize code size, for example, at the expense of more orange checks.

® Quality Goals — PolySpace software can help you meet quality goals,
but it cannot define those goals for you. Before you verify code, you must
define quality goals for your application. These goals should be based on
the criticality of the application, as well as time and cost constraints.

It is these factors that ultimately determine how many orange checks are
acceptable in your results, and what you should do with the orange checks

that remain.

Thus, a more appropriate question is “How do I manage orange checks?”

9-9

9 Managing Orange Checks

9-10

This question leads to two main activities:

¢ Reducing the number of orange checks

® Working with orange checks

How to Manage Orange Checks

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve the quality goals
you define. To do this, however, you must integrate PolySpace verification
into your development process.

Similarly, you cannot successfully manage orange checks simply by using
PolySpace options. To manage orange checks effectively, you must take
actions while coding, when setting up your verification project, and while
reviewing verification results.

To successfully manage orange checks, perform each of the following steps:

1 Define your quality objectives to set overall goals for application quality.
See “Defining Quality Objectives” on page 2-5.

2 Set PolySpace analysis options to match your quality objectives. See
“Specifying Options to Match Your Quality Objectives” on page 3-19.

3 Define a process to reduce orange checks. See “Reducing Orange Checks in
Your Results” on page 9-11.

4 Apply the process to work with remaining orange checks. See “Reviewing
Orange Checks” on page 9-29.

Reducing Orange Checks in Your Results

Reducing Orange Checks in Your Results

In this section...

“Overview: Reducing Orange Checks” on page 9-11

“Applying Coding Rules to Reduce Orange Checks” on page 9-12
“Considering Generated Code” on page 9-17

“Improving Verification Precision” on page 9-17

“Stubbing Parts of the Code Manually” on page 9-24
“Describing Multitasking Behavior Properly” on page 9-27

“Considering Contextual Verification” on page 9-28

Overview: Reducing Orange Checks

There are several actions you can take to reduce the number of orange checks
in your results.

However, it is important to understand that while some actions increase
the quality of your code, others simply change the number of orange checks
reported by the verification, without improving code quality.

Actions that reduce orange checks and improve the quality of your code:

® Apply coding rules — Coding rules are the most efficient means to reduce
oranges, and can also improve the quality of your code.

* Move to generated code — Generated code can reduce orange checks and
eliminate certain types of coding errors.

Actions that reduce orange checks through increased verification precision:

® Set precision options — There are several PolySpace options that
can increase the precision of your verification, at the cost of increased
verification time.

¢ Implement manual stubbing — Manual stubs that accurately emulate
the behavior of missing functions can increase the precision of the
verification.

9-11

9 Managing Orange Checks

9-12

® Specify multitasking behavior — Accurately defining call sequences and
other multitasking behavior can increase the precision of the verification.

Options that reduce orange checks but do not improve code quality or the
precision of the verification:

¢ Create empty stubs — Providing empty stubs for missing functions can
reduce the number of orange checks in your results, but does not improve
the quality of the code.

¢ Constrain data ranges — You can use data range specifications (DRS)
to limit the scope of a verification to specific variable ranges, instead of
considering all possible values. This reduces the number of orange checks,
but does not improve the quality of the code. Therefore, DRS should be
used specifically to perform contextual verification, not simply to reduce
orange checks.

Each of these actions have trade-offs, either in development time, verification
time, or the risk of errors. Therefore, before taking any of these actions, it is
important to define your quality objectives, as described in Chapter 2.

It is your quality objectives that determine how many orange checks are
acceptable in your results, what actions you should take to reduce the number
of orange checks, and what you should do with any orange checks that remain.

Applying Coding Rules to Reduce Orange Checks

The number of orange checks in your results depends strongly on the coding
style used in the project. Applying coding rules can both reduce the number of
orange checks in your verification results, and improve the quality of your
code. Coding rules are the most efficient way to reduce orange checks.

PolySpace software allows you to check MISRA C coding rules during
verification. If your code complies with the first subset of MISRA rules (coding
rules with a direct impact on selectivity), the total number of orange checks
will decrease substantially, and the percentage of orange checks representing
real bugs will increase.

In addition, some code constructions are known to produce orange checks. If
your design avoids these constructions, you will see fewer orange checks in

Reducing Orange Checks in Your Results

your verification results. The second subset of MISRA rules (coding rules with
an indirect impact on selectivity), checks for these constructions.

The following coding rules are recommended to reduce oranges:

e “Set of Coding Rules with a Direct Impact on Selectivity” on page 9-13

e “Set of Coding Rules with an Indirect Impact on Selectivity” on page 9-15

For more information on checking MISRA C coding rules, see Chapter 11,
“MISRA Checker”.

Set of Coding Rules with a Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your
verification results.

Rule # Description

MISRA 8.11 | The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal
linkage

MISRA 8.12 | When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization

MISRA 11.2 | Conversion shall not be performed between a pointer to an
object and any type other than an integral type, another
pointer to a object type or a pointer to void

MISRA 11.3 | A cast should not be performed between a pointer type and
an integral type

MISRA 12.12 | The underlying bit representations of floating-point values
shall not be used

MISRA 13.3 | Floating-point expressions shall not be tested for equality

or inequality

9-13

9 Managing Orange Checks

Rule # Description

MISRA 13.4 | The controlling expression of a for statement shall not
contain any objects of floating type

MISRA 13.5 | The three expressions of a for statement shall be concerned
only with loop control

MISRA 14.4 | The goto statement shall not be used.

MISRA 14.7 | A function shall have a single point of exit at the end of
the function

MISRA 16.1 | Functions shall not be defined with variable numbers of
arguments

MISRA 16.2 | Functions shall not call themselves, either directly or
indirectly

MISRA 16.7 | A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object

MISRA 17.3 | >, >=, <, <= shall not be applied to pointer types except
where they point to the same array

MISRA 17.4 | Array indexing shall be the only allowed form of pointer
arithmetic

MISRA 17.5 | The declaration of objects should contain no more than 2
levels of pointer indirection

MISRA 17.6 | The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 | An area of memory shall not be reused for unrelated
purposes.

MISRA 18.4 | Unions shall not be used

MISRA 20.4 | Dynamic heap memory allocation shall not be used.

Note MISRA rules 16.7, 17.3 and 18.3 are not checked.

Reducing Orange Checks in Your Results

Set of Coding Rules with an Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can
improve the selectivity of your verification results. The following set of coding
rules help address design issues that can impact selectivity.

Rule # Description

MISRA 5.1 Identifiers (internal and external) shall not rely on the
significance of more than 31 characters

MISRA 6.3 typedefs that indicate size and signedness should be used
in place of the basic types

MISRA 8.7 Objects shall be defined at block scope if they are only
accessed from within a single function

MISRA 9.2 Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.1 Conversion shall not be performed between a pointer to a
function and any type other than an integral type

MISRA 11.5 Type casting from any type to or from pointers shall not
be used

MISRA 12.1 Limited dependence should be placed on C’s operator
precedence rules in expressions

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits

MISRA 12.4 The right hand operand of a logical && or | | operator shall

not contain side effects

9-15

9 Managing Orange Checks

9-16

Rule # Description

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions

MISRA 12.6 Operands of logical operators (&&, | | and !) should be
effectively Boolean. Expression that are effectively Boolean
should not be used as operands to operators other than
(&&, || or!)

MISRA 12.9 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned

MISRA 12.10 | The comma operator shall not be used

MISRA 13.1 Assignment operators shall not be used in expressions that
yield Boolean values

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop

MISRA 14.8 The statement forming the body of a switch, while, do while
or for statement shall be a compound statement

MISRA 14.10 | All if else if constructs should contain a final else clause

MISRA 15.3 The final clause of a switch statement shall be the default
clause

MISRA 16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration

MISRA 16.8 All exit paths from a function with non-void return type
shall have an explicit return statement with an expression

MISRA 16.9 A function i1dentifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty

MISRA 19.4 C macros shall only expand to a braced initializer, a

constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct

Reducing Orange Checks in Your Results

Rule # Description

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives

MISRA 19.10 | In the definition of a function-like macro each instance of
a parameter shall be enclosed in parentheses unless it is
used as the operand of # or ##

MISRA 19.11 | All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef preprocessor
directives and the defined() operator

MISRA 19.12 | There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

Note MISRA rule 20.3 is not checked by PolySpace software.

Considering Generated Code

Moving to generated code can reduce the number of orange checks in your
results, and improve the overall quality of your software.

Generated code has a well-defined set of coding rules, and eliminates certain
types of coding errors by construction. This results in higher ratio of green
checks in your verification results.

The PolySpace Model Link SL, PolySpace Model Link TL, and PolySpace
UML Link™ RH products allow you to integrate PolySpace verification into
a generated code workflow.

For more information, see the PolySpace Model Link Products User’s Guide.

Improving Verification Precision

Improving the precision of a verification can reduce the number of orange
checks in your results, although it does not affect the quality of the code itself.

9-17

9 Managing Orange Checks

9-18

There are a number of PolySpace options that affect the precision of the
verification. The trade off for this improved precision is increased verification
time.

The following sections describe how to improve the precision of your
verification:

e “Balancing Precision and Verification Time” on page 9-18
e “Setting the Analysis Precision Level” on page 9-19

® “Setting Software Safety Analysis Level” on page 9-21

® “Other Options that Can Improve Precision” on page 9-22

Balancing Precision and Verification Time

When performing code verification, you must find the right balance between
precision and verification time. Consider the two following extremes:

e [f a verification runs in one minute but contains only orange checks, the
verification is not useful because each check must be reviewed manually.

e [f a verification contains no orange checks (only gray, red, and green), but
takes six months to run, the verification is not useful because of the time
spent waiting for the results.

Higher precision yields more proven code (red, green, and gray), but takes
longer to complete. The goal is therefore to get the most precise results in
the time available. Factors that influence this compromise include the time
available for verification, the time available to review results, and the stage
in the development cycle.

For example, consider the following scenarios:

¢ Unit testing — Before going to lunch, a developer starts a verification.
After returning from lunch the developer will review verification results
for one hour.

¢ Integration testing — Before going home, a developer starts a verification.
The developer will spend the next morning reviewing verification results.

Reducing Orange Checks in Your Results

e Validation testing — Before leaving the office on Friday evening, a
developer starts a verification. The developer will spend the following week
reviewing verification results.

Each of these scenarios require the developer to use PolySpace software
in different ways. Generally, the first verification should use the lowest
precision mode, while subsequent verifications increase the precision level.

Note It is possible that a verification never ends. In this case, you may need
to split the application.

Setting the Analysis Precision Level

The analysis Precision Level specifies the mathematical algorithm used
to compute the cloud of points (polyhedron) containing all possible states
for the variables.

Although changing the precision level does not affect the quality of your code,

orange checks caused by low precision become green when verified with
higher precision.

9-19

9 Managing Orange Checks

Operation: 1 / (x-¥)

Affect of Precision Rate on Orange Checks
To set the precision level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.

2 Select the -00, -01, -02 or -03 precision level the Precision Level
drop-down list.

For more information, see “-O(0-3)"in the PolySpace Products for C Reference.

Note You can select specific precision levels for individual modules in the

verification.

9-20

Reducing Orange Checks in Your Results

Setting Software Safety Analysis Level

The Software Safety Analysis level of your verification specifies how many
times the abstract interpretation algorithm passes through your code. The
deeper the verification goes, the more precise it is.

There are 5 Software Safety Analysis levels (pass0 to pass4). By default,
verification proceeds to pass4, although it can go further if required. Each
iteration results in a deeper level of propagation of calling and called context.

To set the Software Safety Analysis level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.

2 Select the appropriate level in the To end of drop-down list.

For more information, see “-to verification-phase”in the PolySpace Products

for C Reference.

Note The Software Safety Analysis level applies to the entire application.
You cannot select specific levels for individual modules in the verification.

Example: Orange Checks and Software Safety Analysis Level

The following example shows how orange checks are resolved as verification
proceeds through Software Safety Analysis levels 0 and 1.

Safety Analysis Level O

Safety Analysis Level 1

#include <stdlib.h>

void ratio (float x, float *y)
{

*y=(abs(x-*y))/(x+*y);

}

void leveli (float x,
float y, float *t)

#include <stdlib.h>

void ratio (float x, float *y)
{

*y=(abs(x-*y))/(x+*y);

}

void leveli (float x,
float y, float *t)

9-21

9 Managing Orange Checks

Safety Analysis Level O

Safety Analysis Level 1

{ float v;

V=9,

ratio (x, &y);

*t 1.0/(v - 2.0 * x);
}

float level2(float v)
{

float t;

t = v;

level1 (0.0, 1.0, &t);
return t;

}

void main(void)

{

float r,d;

d= level2(1.0);

r 1.0 (2.0 d);

}

{ float v;

V=9,

ratio (x, &y);

*t =1.0/(v - 2.0 * Xx);
}

float level2(float v)
{

float t;

t = v;

leveli1 (0.0, 1.0, &t);
return t;

}

void main(void)

{

float r,d;

d= level2(1.0);
r=1.0/ (2.0 - d);
}

In this example, division by an input parameter of a function produces an
orange during Level 0 verification, but turns to green during level 1. The
verification gains more accurate knowledge of x as the value is propagated

deeper.

Other Options that Can Improve Precision
The following options can also improve verification precision:

¢ “Improve precision of interprocedural analysis” on page 9-23

® “Sensitivity context” on page 9-23

e “Inline” on page 9-23

9-22

Reducing Orange Checks in Your Results

Note Changing these options does not affect the quality of the code itself.
Improved precision can reduce the number of orange checks, but will increase
verification time.

Improve precision of interprocedural analysis. This option causes the
verification to propagate information within procedures earlier than usual.
This improves the precision within each Software Safety Analysis level,
meaning that some orange checks are resolved in level 1 instead of later levels.

However, using this option increases verification time exponentially. In some
cases this could cause a level 1 verification to take longer than a level 4
verification.

For more information, see “-path-sensitivity-delta number”in the PolySpace
Products for C Reference.

Sensitivity context. This option splits each check within a procedure into
sub-checks, depending on the context of a call. This improves precision for
discrete calls to the procedure. For example, if a check is red for one call to
the procedure and green for another, both colors will be revealed.

For more information, see “-context-sensitivity "procl[,proc2[,...]]"’in the
PolySpace Products for C Reference.

Inline. This option creates clones of a each specified procedure for each call
to it. This reduces the number of aliases in a procedure, and can improve

precision in some situations.

However, using this option can duplicate large amounts of code, leading to
increased verification time and other scaling problems.

For more information, see “-inline "procl[,proc2[,...]]"”’in the PolySpace
Products for C Reference.

9-23

9 Managing Orange Checks

9-24

Stubbing Parts of the Code Manually

Manually stubbing parts of your code can reduce the number of orange checks
in your results. However, manual stubbing generally does not improve the
quality of your code, it only changes the results.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

The following sections describe how to reduce orange checks using manual
stubbing:

e “Manual vs. Automatic Stubbing” on page 9-24
¢ “Emulating Function Behavior with Manual Stubs” on page 9-25

¢ “Reducing Orange Checks with Empty Stubs” on page 9-26

Manual vs. Automatic Stubbing
There are two types of stubs in PolySpace verification:

* Automatic stubs — The software automatically creates stubs for unknown
functions based on the function’s prototype (the function declaration).
Automatic stubs do not provide insight into the behavior of the function,
but are very conservative, ensuring that the function does not cause any
runtime errors.

® Manual stubs — You create these stub functions to emulate the behavior
of the missing functions, and manually include them in the verification
with the rest of the source code. Manual stubs can better emulate missing
functions, or they can be empty.

By default, PolySpace software automatically stubs functions. However,
because automatic stubs are conservative, they can lead to more orange
checks in your results.

Reducing Orange Checks in Your Results

Stubbing Example

The following example shows the effect of automatic stubbing.

void main(void)

a

b=0;
a_missing_function(&a, b);
b 1

Due to automatic stubbing, the verification assumes that a can be any integer,
including 0. This produces an orange check on the division.

If you provide an empty manual stub for the function, the division would be
green. This reduces the number of orange checks in the result, but does not
improve the quality of the code itself. The function could still potentially
cause an error.

However, if you provide a detailed manual stub that accurately emulates the
behavior of the function, the division could be any color, including red.

Emulating Function Behavior with Manual Stubs

You can improve both the speed and selectivity of your verification by
providing manual stubs that accurately emulate the behavior of missing
functions. The trade-off is time spent writing the stubs.

Manual stubs do not need to model the details of the functions or procedures
involved. They only need to represent the effect that the code might have on
the remainder of the system.

Example

This example shows a header for a missing function (which may occur when
the verified code is an incomplete subset of a project).

int a,b;

int *ptr;
void a_missing_function(int *dest, int src);

9-25

9 Managing Orange Checks

/* should copy src into dest */
void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b =1 a;

}

The missing function copies the value of the src parameter to dest, so there
is a division by zero error.

However, automatic stubbing always shows an orange check, because a is
assumed to have any value in the full integer range. Only an accurate manual
stub can reveal the true red error.

Using manual stubs to accurately model constraints in primitives and outside

functions propagates more precision throughout the application, resulting in
fewer orange checks.

Reducing Orange Checks with Empty Stubs

Providing empty manual stubs can reduce the number of orange checks in
your results, but it does not make your code more reliable.

For example, consider the following code:
void write_or_noti1(int *x);

void write_or_not2(int *x);
{ //empty manual stub

}
void orange(void)
{

int x = 12;

int y;

write_or_not1 (&x);
y =y X; //0range ZDV due to automatic stub

9-26

Reducing Orange Checks in Your Results

}
void green(void)
{
int x = 12;
int y;

write_or_not2(&x);
y =y / Xx; // Green due to empty stub
}

The code for the two functions is identical, but the automatic stub produces
an orange check, while the empty stub produces a green.

While the empty stub reduces the number of orange checks in your results,
you must take additional steps to ensure the actual function does not result in
a runtime error.

Describing Multitasking Behavior Properly

The asynchronous characteristics of your application can have a direct impact
on the number of orange checks. Properly describing characteristics such as
implicit task declarations, mutual exclusion, and critical sections can reduce
the number of orange checks in your results.

For example, consider a variable X, and two concurrent tasks T1 and T2.

® X is initialized to 0.

® T1 assigns the value 12 to X.

e T2 divides a local variable by X.

e A division by zero error is possible because T1 can be started before or after

T2, so the division causes an ZDV.

The verification cannot determine if an error will occur without knowing the
call sequence. Modelling the task differently could turn this orange check
green or red.

Refer to “Preparing Multitasking Code” on page 5-20 for information on
tasking facilities, including:

9-27

9 Managing Orange Checks

9-28

e Shared variable protection:
= Critical sections,
= Mutual exclusion,
= Tasks synchronization,
® Tasking:
= Threads, interruptions,
= Synchronous/asynchronous events,

= Real-time OS.

Considering Contextual Verification

By default, PolySpace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on

these inputs could produce an overflow.

PolySpace software also allows you to perform contextual verification, proving
that the software works under normal working conditions. When performing
contextual verification, you use the data range specifications (DRS) module to
set external constraints on global variables and stub function return values,
and the code is verified within these ranges.

Contextual verification can substantially reduce the number of orange checks
in your verification results, but it does not improve the quality of your code.

Note DRS should be used specifically to perform contextual verification, it is
not simply a means to reduce oranges.

For more information, see “Applying Data Ranges to External Variables and
Stub Functions (DRS)” on page 4-26.

Reviewing Orange Checks

Reviewing Orange Checks

In this section...

“Overview: Reviewing Orange Checks” on page 9-29

“Defining Your Review Methodology” on page 9-29

“Performing Selective Orange Review” on page 9-31

“Importing Review Comments from Previous Verifications” on page 9-33

“Performing an Exhaustive Orange Review” on page 9-34

Overview: Reviewing Orange Checks

After you define a process that matches your quality objectives, you do not
have too many orange checks. You have the correct number of orange checks
for your quality model.

At this point, the goal is not to eliminate orange checks, it is to work
efficiently with them.

Working efficiently with orange checks involves:

® Defining a review methodology to work consistently with orange checks

Reviewing orange checks efficiently

Importing comments to avoid duplicating review effort

® Dynamically testing orange checks

Defining Your Review Methodology

Before reviewing verification results, you should configure a methodology for
your project. The methodology defines both the type and number of orange
checks you need to review to meet three criteria levels.

9-29

9 Managing Orange Checks

9-30

~Mumber of checks to review

Criterion 1 Criterion 2 Criterion 3

—Camman

ZDV 5 20 ALL

MIVL 10 50 ALL

S-OVFL 10 50 ALL

COR 0 10 10

MIY 0 a 10

F-OVFL 5 10 20

ASRT 0 5 20
—C B C++ only

CBAI 10 20 ALL

SHF 5 10 ALL

IDP 0 10 20

MIP 0 10 20
—C only

IRV |5 f20 ALL

Sample Review Methodology

The criteria levels displayed in the methodology represent quality levels you
defined as part of the quality objectives for your project.

Note For information on setting the quality levels for your project, see
Chapter 2.

After you configure a methodology, each developer uses it to review
verification results. This ensures that all users apply the same standards
when reviewing orange checks in each stage of the development cycle.

For more information on defining a methodology, see “Selecting the
Methodology and Criterion Level” on page 8-20.

Reviewing Orange Checks

Performing Selective Orange Review

Once you have defined a methodology for your project, you can use assistant
mode to perform a selective orange review.

The number and type of orange checks you review is determined by your
methodology and the quality level you are trying to achieve. As a project
progresses, the quality level (and number of orange checks to review)
generally increases.

For example, you may perform a level 1 review in the early stages of
development, when trying to improve the quality of freshly written code.
Later, you may perform a level 2 review as part of unit testing.

In general, the goal of a selective orange review is to find the maximum
number of bugs in a short period of time. Many orange checks take only a
few seconds to understand. Therefore, to maximize the number of bugs you
can identify, you should focus on those checks you can understand quickly,
spending no more than 5 minutes on each check. Checks that take longer to
understand are left for later analysis.

To perform a selective orange review:

1 Click the Assistant button in the Viewer to select assistant mode.
The Viewer window toolbar displays the assistant mode controls.

2 Select the methodology for your project from the methodology menu.

Methodalogy for C LI
Methodology for Ada

Methodalogy for ©
Methodology for C++
Methodaology for Model Based Designed

3 Select the appropriate quality level for your review using the level slider.

J—

1 2 a

9-31

9 Managing Orange Checks

4 Navigate through the checks by clicking the forward arrow

5 Perform a quick code review on each orange check, spending no more than
5 minutes on each.

Your goal is to quickly identify whether the orange check is a:
¢ potential bug — code which will fail under some circumstances.

¢ inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

¢ data set issue — a theoretical set of data that cannot actually occur.

See “Sources of Orange Checks” on page 9-6 for more information on each
of these causes.

Note If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand.

6 If you cannot identify a cause within 5 minutes, move on to the next check.

Note Your goal is to find the maximum number of bugs in a short period of
time. Therefore, you want to identify the source of as many orange checks
as possible, while leaving more complex situations for future analysis.

7 Once you understand the cause of an orange check, select the check box to
indicate that you have reviewed the check.

9-32

Reviewing Orange Checks

example.c / Recursion line 142 { column 15

+ gdvance = 1.0f/ (float) (*depth); /* potential division by zero */

v @IN&I - depth cannot be negative

operator / on type float 32
lefr: 1.0

ﬂ
+5

right: [-2.147SE ° .. -2.8989] or [-2.0001 .. -9.9999E '] or 0.0 or [2.3999 |

8 Enter a comment for the reviewed check in the text box, indicating the
results of your review.

For example, you can use acronyms to classify the checks being reviewed:
¢ FNO - Bug to be Fixed NOw

* FNR — Bug to be Fixed in Next Release

¢ MQI — Minor Quality Issue.

* RBI — RoBustness Issue

® DFC — DeFensive Code

e NAI — Not An Issue

9 Continue to click the forward arrow until you have reviewed all of the
checks identified by the assistant.

10 Select File > Save checks and comments to save your review comments.

Importing Review Comments from Previous
Verifications

Once you have reviewed verification results for a module and saved your
comments, you can import those comments into subsequent verifications of
the same module, allowing you to avoid reviewing the same check twice.

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.

9-33

9 Managing Orange Checks

9-34

2 Select File > Import checks and comments.
3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Once you import checks and comments, the go to next check 4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check g icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

Performing an Exhaustive Orange Review

Up to 80% of orange checks can be resolved using multiple iterations of the
process described in “Performing Selective Orange Review” on page 9-31.
However, for extremely critical applications, you may want to resolve all
orange checks. Exhaustive orange review is the process for resolving the
remaining orange checks.

An exhaustive orange review is generally conducted later in the development
process, during the unit testing or integration testing phase. The purpose of
an exhaustive orange review is to analyze any orange checks that were not
resolved during previous selective orange reviews, to identify potential bugs
in those orange checks.

You must balance the time and cost of performing an exhaustive orange
review against the potential cost of leaving a bug in the code. Depending on
your quality objectives, you may or may not want to perform an exhaustive
orange review.

Reviewing Orange Checks

Cost of Exhaustive Orange Review

During an exhaustive orange review, each orange check takes an average of
5 minutes to review. This means that 400 orange checks require about four
days of code review, and 3,000 orange checks require about 25 days.

However, if you have already completed several iterations of selective orange
review, the remaining orange checks are likely to be more complex than
average, increasing the average time required to resolve them.

Exhaustive Orange Review Methodology
Performing an exhaustive orange review involves reviewing each orange

check individually. As with selective orange review, your goal is to identify
whether the orange check is a:

* potential bug — code which will fail under some circumstances.

® inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

® data set issue — a theoretical set of data that cannot actually occur.

* Basic imprecision — checks caused by imprecise approximation of the
data set used for verification.

Note See “Sources of Orange Checks” on page 9-6 for more information on
each of these causes.

Although you must review each check individually, there are some general
guidelines to follow.

1 Start your review with the modules that have the highest selectivity in
your application.

If the verification finds only one or two orange checks in a module or
function, these checks are probably not caused by either inconclusive
verification or basic imprecision. Therefore, it is more likely that these
orange checks contain actual bugs. In general, these types of orange checks
can also be resolved more quickly.

9-35

9 Managing Orange Checks

2 Next, examine files that contain a large percentage of orange checks
compared to the rest of the application. These files may highlight design
issues.

Often, when you examine modules containing the most orange checks,
those checks will prove inconclusive. If the verification is unable to draw
a conclusion, it often means the code is very complex, which can mean
low robustness and quality. See “Inconclusive Verification and Code
Complexity” on page 9-36.

3 For all files you review, spend the first 10 minutes identifying checks that
you can quickly categorize (such as potential bugs and data set issues),
similar to what you do in a selective orange review.

Even after performing a selective orange review, a significant number of
checks can be resolved quickly. These checks are more likely than average
to reflect actual bugs.

4 Spend the next 40 minutes of each hour tracking more complex bugs.

If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand. See
“Resolving Orange Checks Caused by Basic Imprecision” on page 9-37.

5 Depending on the results of your review, correct the code or comment it to
1dentify the source of the orange check.

Inconclusive Verification and Code Complexity

The most interesting type of inconclusive check occurs when verification
reveals that the code is too complicated. In these cases, most orange checks in
a file are related, and careful analysis identifies a single cause — perhaps a
function or a variable modified many times. These situations often focus on
functions or variables that have caused problems earlier in the development
cycle.

For example, consider a variable Computed_Speed.

9-36

Reviewing Orange Checks

® Computed_Speed is first copied into a signed integer (between -2731 and
2731-1).

e Computed_Speed 1s then copied into an unsigned integer (between 0 and
2731-1).

® Computed_Speed is next copied into a signed integer again.

¢ Finally, Computed_Speed is added to another variable.
The verification reports 20 overflows (OVFL).

This scenario does not cause a real bug, but the development team may know
that this variable caused trouble during development and earlier testing
phases. PolySpace verification also identified a problem, suggesting that

the code is poorly designed.

Resolving Orange Checks Caused by Basic Imprecision

On rare occasions, a module may contain many orange checks caused by
imprecise approximation of the data set used for verification. These checks are
usually local to functions, so their impact on the project as a whole is limited.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly.

In these cases, PolySpace software can only assist you through the call tree
and dictionary. The code needs to be reviewed using alternate means. These
alternate means may include:

Additional unit tests

Code review with the developer

Checking an interpolation algorithm in a function

Checking calibration data

For more information on basic imprecision, see “Sources of Orange Checks”
on page 9-6.

9-37

9 Managing Orange Checks

9-38

Automatically Testing Orange Code

In this section...

“Automatic Orange Tester Overview” on page 9-38

“Before Using the Automatic Orange Tester” on page 9-41
“Launching the Automatic Orange Tester” on page 9-43
“Reviewing the Test Results” on page 9-47

“Refining Data Ranges” on page 9-51

“Saving and Reusing Your Configuration” on page 9-55
“Exporting Data Ranges for PolySpace Verification” on page 9-56
“Configuring Compiler Options” on page 9-57

“Technical Limitations” on page 9-58

Automatic Orange Tester Overview

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you 1dentify the cause of these errors.

The Automatic Orange Tester complements results review in the Viewer.
Manually performing an exhaustive orange review can be time consuming.
The Automatic Orange Tester saves time by automatically creating test cases
for all input variables in orange code, and then dynamically testing the code
to find actual runtime errors.

The Automatic Orange Tester also provides detailed information on why each
test-case failed, including the actual values that caused the error. You can
use this information to quickly identify the cause of the error, and determine
if there 1s an actual bug in the code.

Note To run the Automatic Orange Tester on Linux or Unix systems, you
must have a 32-bit C compiler.

Automatically Testing Orange Code

. PolySpace Automatic Orange Tester - _testgen.tgf - | Ell_i
File Options Help
Variable Name | Type | Values | Advanced |f

E|E| External Scope
E D Function: random_float

I return

EI D Function: get_bus_status

E} D Function; read_bus_status

E return

.

float32

int32

int32

int32

mir. .max Advanced I
mir. .max Advanced I
min. .max Advanced I
mir. .max Advanced I]

Mumber of tests: I 1000
Mumber of iterations for loops: I 100
Per test timeout (in second): I 10

~Test Campaign Configuration ———

Start |

~Test Campaign Results
Completed tests: 1000
Mo PolySpace run-time errors detected: 176
Total failed: B24
MNumber of checks/Tests with errors: 15/824
Timeout: 0
Stopped tests: 0
Stop All | Stop Gurrent |

Test Completed Time Remaining: 00:00:00
iResults : File Line Column Error # Testcases Failed |[®
_Log [initislisations.c 47 & IDP (llegal Derefere... (237 =

initizlisations.c a9 7 MIVL (Mon Initialised ... (127

example.c 26 2 ASRT (User Assertio... (38

example.c 43 12 COVFL (Float Qverflow) (29

single_file_analysis.c |25 137 ASRT (User Assertio,., 32

single_file_analysis.c |26 137 ASRT (User Assertio... (130 B
example.c 104 10 IDP (legal Derefere... (39

example.c 43 12 UNFL (Float Underflow) (29

example.c 49 156 OVFL (Float Overflow) (21 v|

PolySpace® Automatic Orange Tester

9-39

9 Managing Orange Checks

Note The version of the product used to verify the source code must be the
same as the one used for analysis in the Automatic Orange Tester. If you
open verification results created with an older version of the product in the
Automatic Orange Tester, you may get a compilation error.

To avoid this problem, re-launch the code verification with the current version
of the product.

9-40

Automatically Testing Orange Code

How the Automatic Orange Tester Works

PolySpace verification mathematically analyzes the operations in the code
to derive its dynamic properties without actually executing it (see “What is
Static Verification” on page 1-4). While this verification can identify almost
all runtime errors, some operations cannot be proved either true or false
because the input values are unknown. These are reported as Orange checks
in the Viewer (see “What is an Orange Check?” on page 9-2).

The Automatic Orange Tester takes the PolySpace verification results, and
generates instrumented code around orange checks so the code can be run. It
then generates test cases based on the input variables, and dynamically tests
the code for runtime errors.

This dynamic testing approach allows the Automatic Orange Tester to
separate actual runtime errors from theoretical problems. You can then focus
on these errors to determine if an orange check is identifying an actual bug.

Limitations of Dynamic Testing

Because the Automatic Orange Tester uses a finite number of test cases to
analyze the code, there is no guarantee that it will identify a problem in any
individual test campaign. It is therefore possible that a particular variable
value causes an error, but that value was never tested.

Similarly, since the Automatic Orange Tester builds test cases each time
your run it, there is not guarantee that it will produce the same results with
each test campaign.

You can specify the number of tests to run in each test campaign. Running
more tests increases the chances of finding a runtime error, but also takes
more time to complete.

Before Using the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To run the verification:

9-41

9 Managing Orange Checks

9-42

1 Open the PolySpace Launcher for C.

2 Load the project Demo_C-without-MISRA-checker.cfg.

3 In the Analysis Options window, expand the PolySpace inner settings

menu.

4 Select the Automatic Orange Tester check box.

Search internal name from the selected line: I

2L

MName Value Internal name
Analysis options
[#-General
[#]-Target/Compilation
[#]-Compliance with standards
[=1-PalySpace inner settings
[+--Run a verification unit by unit - -unit-by-unit
[H--Generate a main W -main-generator
[#-Stubbing
[#-Assumptions
i W i
----- Run verification in 32 or 64-bit mode auto -machine-architecture
----- Mumber of processes for multiple CPU care systems [4 ‘Max-processes

----- Other options

[-Precision/Scaling

[#]-Multitasking

The -prepare-automatic-tests option is enabled.

5 Deselect Send to PolySpace Server.

6 Click Start.

The PolySpace verification starts. During the compilation phase, the
software generates the data necessary to perform dynamic tests. The
PolySpace verification then continues as usual.

When the verification process completes, the software asks if you want to

launch PolySpace Viewer.

Automatically Testing Orange Code

7 Click OK to launch the viewer.

Launching the Automatic Orange Tester
Once the PolySpace verification is complete, you can use the Automatic

Orange Tester to perform dynamic tests of the unproven (orange) code.

To perform dynamic tests with the Automatic Orange Tester:

1 Open your results in the PolySpace Viewer.

9-43

9 Managing Orange Checks

. PolySpace Viewer - G\ PolySpace_Results\RTE_px_02_Example_Project_LAST_RESULTS.rte - | Dlﬂ
File Edit Reports Windows Help

[O @) o ofat @ Gl e 1 | @] & 0] R = g

PROC i PR o FLORT
J‘ S TR [Launch the PolySpace Automatic Orange Tester, |~ OUFL RERT - NTE TG HTL KR U0A
Coding review progress Count | Progress : example.c [Close_To_Zero f line 43 / column 12
num F-OVFL reviewed / num F-OVFL to review (Orange) |0/7 i} =] if {(xmax 2 xmin) < 1.0E-37£)
num reviewed / num to review {Orange) 0/52 i}
Software reliability indicator 366441 82| @lﬂ | PI
N
operator - on type float 32 =
left: full-range [-3.4029E °° .. 3.4029E °7]
right: full-range [-3.4029E ° .. 3.4029E] =
" 4
Procedural entities Ll Bl el S | variables view [=1| | & call Tree vie ol
|l Exempie_Project 5 |18 |22 1 vz 1
.)
- e = |) Example_Project = b example Close
£ 4 |11 |14 | 54 Wiritten by 4 ||| d7-initislisations. arr ~ i B pot_stubs,
B3 5[n by » B -initialisations. cument_dats b pst_stubs,
[F]--initislisations. first_paiload " Called by 4
[Written by task Al| | - initizisations. s2cond_psic ,
v > [-initizlisations. 20 f+ calls
S [H--single_file_anahysis. output I- Complete
Potentially Written by [$]-single_filke_snshyrsis. output
Potentially Read by [H--=ingle_file_snahysis. output p Update on selection
[+]--single_file_anahysis.zaved -
4| ;IJ ml m

=

BEE

37 static woid Cloze_To_Zero (woid) d
38 {

39 float xwin = randowm float(); =
40 float xmex = random float();

41 float ¥;

4z

43 if ((xmax - xmin) < 1.0E-37f)

a4 i
a5 ¥ = 1.0f;
46 1

47 elzse
49 ¥ = (xmax + xmin) / Ixmax - xmin);

4 48 { /% division by =zero is impossible here #/
L N | By 1 -
H KN j

[Example_Project Source file: example.c example.c Line: 137 Column: 12

... R e

9-44

Automatically Testing Orange Code

2 Click El (Launch the PolySpace Automatic Orange Tester) in the toolbar
to open the Automatic Orange Tester.

The Automatic Orange Tester opens.

PolySpace Automatic Orange Tester - _testgen.tof =10l x|
File Options Help
Variable Name I Type | Values I Advanced |f'3
ED External Scope N
EI- D Function; random_float
: & return float32 min. .max Advanced |
E} |:| Function: random_int
int32 min. .max Advanced |
=[] Function: get_bus_status _
E & retumn int32 min. .max ﬂl

E} |:| Function: read_bus_status

il
aw
~Test Campaign Configuration——— ~Test Campaign Results
Completed tests: 0
Number of tests: I iiE Mo PolySpace run-time errors detected: 0
Mumber of iterations for loops: I 100 Total failed: o]
e R T I—IU Mumber of checks Tests with errors: 0
Timeout: 0
Stopped tests; i}
Start | Stop Al | Stop Current |
Idle | 0%
Results File Line Column I Error | # Testcases Failed |
_log -
[|

3 In the Test Campaign Configuration window, specify the following

parameters:

9-45

9 Managing Orange Checks

* Number of tests — Specifies the total number of test cases you want
to run. Running more tests increases the chances of finding a runtime
error, but also takes more time to complete.

* Number of iterations for infinite loops — Specifies the maximum
number of loop iterations to perform before the Automatic Orange Tester
identifies an infinite loop. A larger number of iterations decreases the
chances of incorrectly identifying an infinite loop, but also may take
more time to complete.

® Per test timeout — Specifies the maximum time that an individual test
can run (in seconds) before the Automatic Orange Tester moves on to
the next test. Increasing the time limit reduces the number of tests that
timeout, but can also increase the total verification time.

4 Click Start to begin testing.

The Automatic Orange Tester generates test cases and runs the dynamic
tests.

9-46

Automatically Testing Orange Code

im0
File Options Help
Variable Mame I Type | Values I Advanced |53
E|E| External Scope =
E} D Function: random_float
Q return float3z . .max Advanced |
int32 mir. .max Advanced |
E}D Function: get_bus_status 1
return int32 . .max Advanced |
E}D Function: read_bus_status ‘ﬂ

. 2

~Test Campaign Configuration———— ~Test Campaign Results
Completed tests: 640
Number of tests: I L Mo PolySpace run-time errors detected: 122
Mumber of iterations for loops: I 100 Total failed: 518
e e e A e I—m Mumber of checks Tests with errars: 15/518
Timeout: 0
Stopped tests: 1]

Start | %

Stop Current |

Running... Time Remaining: 00:00:08 _
i File Line Column Error # Testrases Failed |F
_Lod levample.c 114 19 OVFL (Scalar Overflow) |12]
initialisations.c 33 7 MIVL (Mon Initialised ... |70
initialisations.c 47 & IDP (Tlegal Derefere... 139
example.c 43 12 OVFL (Float Overflow) |21
example.c 26 2 ASRT {User Assertio... |24
single_file_analysis.c |26 137 ASRT (User Assertio... |101
example.c 104 10 IDP (Ilegal Derefere... |27
single file analysis.c (25 137 [4SRT (User Assertio... |53 j

5 If you want to stop the testing before it completes:

¢ (Click Stop Current to stop the current test an move on to the next one.

¢ (Click Stop All to immediately stop all tests.

9-47

9 Mana

ging Orange Checks

9-48

Reviewing the Test Results

When testing is complete, the Automatic Orange Tester displays an overview
of the testing results, along with detailed information about each failed test.

~Test Campaign Configuration——

Number of tests: I 1000

Mumber of iterations for loops: 100

Per test timeout (in second): I 10

Start |

~Test Campaign Results

Completed tests: 1000
Mo PolySpace run-time errors detected: 191
Total failed: 809
Mumber of checks Tests with errars: 15/809
Timeout: 0
Stopped tests: o]

Stop Al | Stop Current

Test Completed Time Remaining: 00:00:00
File Line Column Error # Testcases Failed |
_Log lexample.c 114 19 CVFL (Scalar Overflow) |23 =
initialisations.c 39 7 MIVL (Mon Initislised ... |130
initialisations.c 47 & IDP (Ilegal Derefere.., |217
example.c 43 12 OVFL (Float Overflow) |29
example.c 26 2 ASRT (User Assertio... |39
single_file_analysis.c |26 137 ASRT {User Assertio... |150
example.c 104 10 IDP (Ilegal Derefere.., |38
single file analysis.c (25 137 [4SRT fUser Assertio. .. [30 j

Test Campaign Results

The Test Campaign Results window displays overview information about the
results of your dynamic tests, including:

¢ Completed tests — Displays the total number of tests completed.

¢ No PolySpace runtime errors detected — Displays the number of tests
that did not produce a runtime error.

¢ Total failed — Displays the number of tests that produced a runtime error.

¢ Number of checks/Tests with errors — Displays the number of
PolySpace checks that produced at least one failed test, as well as the total
number of tests that produced a runtime error.

Automatically Testing Orange Code

* Timeout — Displays the number of tests that exceeded the specified Per
test timeout limit.

* Stopped tests — The number of tests that were stopped manually.
Use the Test Campaign Results Window to see an overall assessment of

your test results, as well as to decide if you need to increase the Per test
timeout value.

Results Table

The Results table displays detailed information about each failed test, to help
you identify the cause of the runtime error. This information includes:

e The filename, line number, and column in which the error was found.
¢ The type of error that occurred.

¢ The number of test cases in which the error occurred.

In addition, You can view more details about any failed test by clicking on the
appropriate row in the Results table. The Test Case Detail dialog box opens.

9-49

9 Managing Orange Checks

9-50

Bl est Case Detail =101 x|
example.c I
103 { Al
104 *p = 5; /* Out of bounds */
105
106 else
107 I
108 i++ —
109 }
110 }
111
112 i = get_bus_status();
113
114 if (i >=0) {<ok) = 103} =
. d
Line: 114 (col 19): OVFL (Scalar Overflow)
TestCase Reason
1 [In operation 4 * 1228805911, result type is int 32] =
122 [In operation 4 = 1877372035 , result type is int 32]
153 [In operation 4 * 1314702766 , result type is int 32]
210 [In operation 4 * 1837267571 , result type is int 32]
277 [In operation 4 * 1583681309 , result type is int 32]
300 [In operation 4 * 1154961833 , result type is int 32]
357 [In operation 4 * 1882381688 , result type is int 32]
358 [In operation 4 * 1356407201 , result type is int 32]
1434 [In operation 4 * 351384202 , result type is int 32] o
532 [In operation 4 * 1385817304 , result type is int 32]
533 [In operation 4 * 1518333200 , result type is int 32]
575 [In operation 4 * 1068031457 , result type is int 32]
K31 [In operation 4 * 665380428 |, result type is int 32]
743 [In operation 4 * 663006287 , result type is int 32] :I

=S

The Test Case Detail dialog box displays the portion of the code in which the
error occurred, and gives detailed information about why each test case failed.
Since the Automatic Orange Tester performs runtime tests, this information

includes the actual values that caused the error.

You can use this information to quickly identify the cause of the error, and

determine if there is an actual bug in the code.

Automatically Testing Orange Code

Log
The Log window displays a complete list of all the tests which failed, as well
as summary information.

You can copy information from the log window to paste into other applications,
such as Microsoft® Excel®.

~Test Campaign Configuration———— ~Test Campaign Results
Completed tests: 1000
Number of tests: I 1000 Mo PolySpace run-time errors detected: 191
Number of iterations for loops: I— Total failed: 809
Fxrims: Fmrdls szl I— Mumber of checks/Tests with errors; 15/809
Timeout: 0
Stopped tests: 0
Start | Stop Al | Stop Current |
Test Completed Time Remaining: 00:00:00 101
Results [Test 998: initizlizations. c:85 (col 7) Red NIVL (Mon Initislised Local Variable) [Type is int 32]
Test 995 Warning: C:'\PolySpace\PolySpaceForCandCPP_R.2009b\Examples'Demo_C_Single-Filesources!initialisations. c!
Test 1000: example.c: 26 (col 2) Red ASRT (User Assertion Failed) [Value = 0]
ITest Summary
Mumber of tests 1000
Completed tests 1000
Ma PolySpace run-time errors detected 151
Total failed 303
Mumber of checks/Tests with errors 15/809
Timeout 1]
Stopped tests 0
Test duration: 25 seconds
T_ETt ended at: Thu Jul 02 19:14:34 EDT 2009 x
4 »

The log file is also saved in the PolySpace-Instrumented directory with the

following filename:
TestGenerator_day _month_year-time.out

Refining Data Ranges

The Automatic Orange Tester allows you to specify ranges for external
variables. This allows you to perform runtime tests using real-world values
for your variables, rather than randomly selected values.

9-51

9 Managing Orange Checks

Setting ranges for your variables reduces the number of tests that fail due to
unrealistic data values, allowing you to focus on actual problems, rather than
purely theoretical problems.

To refine your data ranges:

1 In the Variables section at the top of the Automatic Orange Tester, identify
the variable for which you want to set a data range.

- PolySpace Automatic Orange Tester - _testgen.tgf - | Dlﬂ

File Options Help

Variable Mame I Type | Values I Advanced |53
E|E| External Scope -~
E} D Function: random_float

g return float32 mir. .max Advanced |
int32 mir. .max Advanced |
E} D Function: get_bus_status
-8 int32 i, .max Advanced[: |
B D Function; read_bus_status

int32 mir. .max Advanced |

ek imbR i Advanred

« |

|»

~Test Campaign Configuration———— ~Test Campaign Results
Completed tests: 1000
Number of tests: I 1000 Mo PolySpace run-time errors detected: 191
Mumber of iterations for loops: 100 Total failed: 809
Fe e imsE Tl I—ID MNumber of checks,Tests with errors: 15/809
Timeout: 0
Stopped tests: 0

Start | Stop All | Stop Gurrent |

i File Line Column Error # Testrases Failed |B
_Log lexample.c 114 19 OVFL (Scalar Overfl... (23 =
initialisations.c 39 7 MIVL (Mon Initialised... {130
initialisations.c 47 & IDP (Tlegal Derefere...|217
example.c 43 12 OVFL (Float Overflow) |29 | || ==
example.c 26 2 ASRT (User Assertio... |39
single_file_analysiz.c |26 137 ASRT (User Assertio... 150 j

9-52

Automatically Testing Orange Code

2 Select Advanced. The Edit Values dialog box opens.

_ioix

Files INone -External Scope

Function: Iget_bus_siﬁms.return

Type: Iint32

Values: Imin..max

—Pointer Options

Set the writing mode for a pointer variable.
¥ Write to the pointed obiect
Writing mode : MO

SING : Only write to the pointed object or the first element in an array.
MULT @ Write to the complete object pointed at. For example all elements in an array will be written,

Variable Values

" Single Yalue I
% Range of values min: Imin min
Mg ID EY
Previous | Next | OK Cancel

3 Set the appropriate values for the variable:
Single Value — Specifies a constant value for the variable.

Range of values, — Specifies a minimum and maximum value for the
variable.

Note For pointers, you can also specify the writing mode:
SING — The tests only write the object or first element in the array.

MULT - The tests write the complete object, or all elements in the array.

9-53

9 Managing Orange Checks

4 Click Next to edit the values for the next variable.

5 When you have finished setting values, click OK to save your changes
and close the Edit Values dialog box.

6 Click Start to retest the code.

The Automatic Orange Tester generates test cases, runs the tests, and
displays the updated results.

9-54

Automatically Testing Orange Code

PuIySpace Automatic Orange Tester - _testgen.tgf - |EI|5|
File Options Help

d

“ariahle Mame Type Values I Advanced I
E—D External Scope
= El Function: random_float

Le float32 0.10000000 Advanced |

= l:l Function: randarn_int

I—Q return int32 min..0 Achvancedd I

= El Function: get_bus_status

L= retumn int32 00,0 Advanced ||

= l:l Function: read_bus_status

L@ return int32 Hin. P Advanced I

| »

= D Function: read_on_bus ;I
-
~Test Campaign Configuration——— ~Test Campaign Results
Completed tests: 1000
ey @ ik I 000 Mo PolySpace run-time errors detected: 997
Murmber of iterations for infinite loops; 100 Total failed: 3
I . 1/3
Per test timeout (in second): I 10 Murnber of checksiTests with errors: A
Timeaut: 0
Stopped tests: o
Start St & | Shap Gurrent |
Test Completed Time Remaining: 0:0:0 T
Resutts | File: I Line I Calutn I Error I # Testcases Failed |fﬂ
_log exarmple .o |114 |1B |IDP llegal Dereferen...|3 I;

The updated results show fewer failed tests, allowing you to focus in on
any actual code problems.

Saving and Reusing Your Configuration

You can save your Automatic Orange Tester preferences and variable ranges
for use in future dynamic testing.

9-55

9 Managing Orange Checks

9-56

To save your configuration:
1 Select File > Save.
2 Enter an appropriate name and click Save.
Your configuration is saved in a . tgf file.
To open a configuration from a previous verification:

1 Select File > Open.
2 Select the appropriate .tgf file, then click Open.
The configuration is opened.

When you open a previously saved configuration, the Log window displays
any differences in the configuration files. For example:

e [f a variable does not exist in the new configuration, a warning is displayed.

e [f the ranges for a variable are no longer valid (if the variable type changes,
for example), a warning is displayed and the range is changed to the largest
valid range for the new data type (if possible).

Exporting Data Ranges for PolySpace Verification

Once you have set the data ranges for your variables, you can export them to a
Data Range Specifications (DRS) file for use in future PolySpace verifications.
This allows you to reduce the number of orange checks identified in the
PolySpace Viewer.

To export your data ranges:

1 Set the appropriate values for each variable you want to specify.
2 Select File > Export DRS.

3 Enter an appropriate name and click Save.

The DRS file is saved.

Automatically Testing Orange Code

For information on using a DRS file for PolySpace verifications, see “Applying
Data Ranges to External Variables and Stub Functions (DRS)” on page 4-26.

Configuring Compiler Options

On UNIX, Solaris, or Linux systems, you must configure your compiler and
linker options before using the Automatic Orange Tester.

Note On Windows systems, the compiler options cannot be modified. You
can only configure the library dependencies.

To set compiler and linker options:
1 Open the Automatic Orange Tester, as described above.
2 Select Options > Configure.

3 The Preferences dialog box opens.

9-57

9 Managing Orange Checks

Preferences

CPolyEpace\Poly Space_CommoniAutamsaticOrange Testerlcobinilcs exe
_ PolySpace\PolySpace CommonldutomaticOrangeTesterlcciinclude

ZPolySpacePolySpace_CommonldutomaticOrangeTester oo binlocink exe
[\PolySpace\PolySpace_CommonlAutomaticCrangeTestericcilib
- alySpace'PolySpace_CommonidutomaticCrange Testercoilibiibe lib =

4 Set the appropriate parameters for your compiler.

9-58

Automatically Testing Orange Code

Technical Limitations

The Automatic Orange Tester has the following limitations:

e “Unsupported PolySpace Options” on page 9-59
e “Options with Limitations” on page 9-59
e “Unsupported C Language Constructions” on page 9-59

Unsupported PolySpace Options

The following options are not supported when you select
-prepare-automatic-tests.

® -entry-points

e -dialect

e -ignore-float-rounding

® -div-round-down

® -char-is-16its

® -short-is-8bits

® -respect-types-in-globals

® -respect-types-in-fields

In addition, Global asserts in the code of the form Pst_Global Assert(A,B)
are not supported with the Automatic Orange Tester.

Options with Limitations

The following options cannot take specific values when you select
-prepare-automatic-tests.

e -target [tms320c3c | sharc21x61]

e .data-range-specification (in global assert mode)

Unsupported C Language Constructions
The code verification stops when any of the following characteristics are met:

9-59

9 Managing Orange Checks

9-60

e ANSI C99 long long and long double types are unsupported for Windows
systems

e (Calls to following routines are unsupported:

= va_start

= va_arg
= va_end
va_copy
setjmp
sigsetjmp
longjmp
siglongjmp

The following C language constructions are ignored:

® The endianness of the target is not managed. The tests are performed as if
the user-defined target has the same endianness as the hardware on which
the Automatic Orange Tester is running

e (Calls to the following routines are ignored:

= signal

= sigset

= sighold

= sigrelse
sigpause
sigignore
sigaction
= sigpending
sigsuspend
= sigvec

= sigblock

Automatically Testing Orange Code

sigsetmask
sigprocmask
siginterrupt
srand
srandom
initstate

setstate

9-61

9 Managing Orange Checks

9-62

Day to Day Use

® “PolySpace In One Click Overview” on page 10-2
e “Using PolySpace In One Click” on page 10-3

l 0 Day to Day Use

PolySpace In One Click Overview

Most developers verify the same files multiple times (writing new code, unit
testing, integration), and usually need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
PolySpace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to PolySpace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

Sek active project 3

Open active project - New_Project

Viewer

Launcher

£ 15

Spoaler
Help 3

Exit

BER EET

Send To d | Compressed (zipped) Folder
Cuk [ﬁ} Deskkop (create shortout)
Copy (# Macromedia FreeHand My
Create Shorkcut | Mail Recipient
Delete I2) Move ko SendTo
Feenams [} My Documents
Properties FalySpace

ﬁ 31 Floppy (A:)

ok DWDJCD-RW Drive (2:)

10-2

Using PolySpace® In One Click

Using PolySpace In One Click

In this section...
“PolySpace In One Click Workflow” on page 10-3

“Setting the Active Project” on page 10-3

“Launching Verification” on page 10-5

“Using the Taskbar Icon” on page 10-8

PolySpace In One Click Workflow

Using PolySpace In One Click involves two steps:
1 Setting the active project.
2 Sending files to PolySpace software for verification.

Setting the Active Project

The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results directory

from the project.
To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

The context menu appears.

10-3

l 0 Day to Day Use

Set active project k

Open ackive project - Example_Project

Viewer

Launcher

7 & T

Spoaler
Help »

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

10-4

Using PolySpace® In One Click

Please set an active project. d |

Laak i I&} polvzpace_project j 4= fji v

includes
resulks
S0UFCES

Cia example.cfg

L

File name: || j | Open I
Files af type: IF'DI_I,ISpace configuration files j Cancel |
p

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

Note You can also set the active project by right-clicking on a project file
(.cfg or .dsk) file and selecting Send To > PolySpace.

Launching Verification
PolySpace in One Click allows you to send multiple files to PolySpace software
for verification.

10-5

l 0 Day to Day Use

To send a file to PolySpace software for verification:

1 Navigate to the directory containing the source files you want to verify.
2 Right-click the file you want to verify.
The context menu appears.

3 Select Send To > PolySpace.

Marme | Size | Tvpe
[- | SKS CFie
Open
Edit

Cpen with WordPad
=2 Scan for wiruses, .,

Dpen Wikh »

&3l WinZip 3
Send To [#] Compressed (zipped) Folder
uk [ﬁ’ Desktop (create shorbout)
apy [Fax Destination via RightFax
reate Shortouk (# Macromedia FreeHand M
Delete

| Mail Recipient
Rename
,D MMy Documents

Properties FalySpace

4L 314 Floppy (A2)

The PolySpace basic settings dialog box appears.

10-6

Using PolySpace® In One Click

Settings

Precision

Passes

Parameters

Results directory |C:\POIy5pace_Result5 |
Function called before main | |
Main generator write variables INone j
Scope

C\PolySpace’polyspace _project ‘sources'example.c

[1]+

[] Send to PolySpace Server D) S1a't| @Cannel |

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.

10-7

l 0 Day to Day Use

5 Leave the default values for the other parameters.

6 Click Start.

The verification starts and the verification log appears.

E:"-.,pulyspace _project' resultsh Example_Project.log

HEHE O @-

[F Function random_float 1= pure. Retums an niaized vale.
Generating the Main ..

Generating call to function: RTE
Daing code transformations ...

i3]

52 zources verification done

£33

[[Ending at: May 13, 2008 & 32:20

=zer time for suif: S.4real, 5.4u + 0=

- [Zenerating remate file

. |Bone

=zer time for polyspace-c S .8real, 5.5u + Oz

£33

*** End of PolySpace Yerifier analysis
EE+3

Adding the analyzis to the gueue ...
Transfering the archive to the server ...

Tranzfer completed.
Analysiz Do 1

The analysis has been queued. You may follow itz progress using the spooler.

1 |

|The analysiz haz been successfully done

Using the Taskbar Icon

The PolySpace in One Click Taskbar icon allows you to access various
software features.

10-8

Using PolySpace® In One Click

Set active project 3

Open active praject - New_Project

Yigwer

Launcher

£ & 7

Spooler
Help 3

Ezxit

[« |[]% B 431 pM

Click the PolySpace Taskbar Icon, then select one of the following options:

® Set active project — Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working directory.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

) EBrowse ... | Set active project »
O ki jeck - M Project
Zi\PalySpaceimy_project.cfg REM ACLvE project - Hew_Frojec
Z:\PolySpacelc_project.chg | Viewer
Ci\PolySpace\cpp_project.cfg E Launcher
Z:\PolySpacelnew_project.cfg E Spoaler
Z:\PolySpaceloneclick. cfg Help »
Exit =

|“Iﬂ

10-9

l 0 Day to Day Use

10-10

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and paths of standard and specific
headers. It does not affect the precision of a verification or the results
directory.

Viewer — Opens the PolySpace viewer. This allows you to review
verification results in the standard graphical interface. In order to load
results into the viewer, you must choose a verification to review in the
Verification Log window.

Launcher — Opens the PolySpace Launcher. This allows you to launch a
verification using the standard PolySpace graphical interface.

Spooler — Opens the PolySpace Spooler. If you selected a server
verification in the “PolySpace Preferences” dialog box, the spooler allows
you to follow the status of the verification.

MISRA Checker

® “PolySpace MISRA Checker Overview” on page 11-2

¢ “Setting Up MISRA C Checking” on page 11-4

¢ “Running a Verification with MISRA C Checking” on page 11-10
e “Rules Supported” on page 11-14

e “Rules Partially Supported” on page 11-40

® “Rules Not Checked” on page 11-51

11 MISRA® Checker

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.!”

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

These 142 rules are divided in three categories:

® 102 required and advisory rules fully supported. PolySpace software can
check all these rules without any limitations. See “Rules Supported” on
page 11-14.

® 20 required and advisory rules partially supported. PolySpace software can
check all these rules with some limitations. These limitations are described
in the associated “Note” paragraph for each rule. See “Rules Partially
Supported” on page 11-40.

® 20 required and advisory rules which cannot be verified by PolySpace
software. These rules cannot be verified because they are outside the scope
of PolySpace verification. They may concern documentation, dynamic
aspects or functional aspects of MISRA rules. These rules are not checked.
The “comment” column details the reason. See “Rules Not Checked” on
page 11-51.

10. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-2

http://www.misra-c.com/

PolySpace® MISRA® Checker Overview

Note Every violation, warning or error, will be written in the log file at
compilation time of a PolySpace verification, except for rules 9.1 (NIV checks),
12.11 (OVFL check using -detect-unsigned-overflows), 13.7 (gray checks),
14.1 (gray checks), 16.2 (Call graph) and 21.1 (all runtime errors).

You will find a set of required and advisory MISRA rules in “Applying Coding
Rules to Reduce Orange Checks” on page 9-12 which ctartan have direct or
indirect impact on the PolySpace selectivity (reliability percentage).

Note If any of the input source files do not compile, MISRA C checking will
be incomplete.

11-3

11 MISRA® Checker

Setting Up MISRA C Checking

114

In this section...

“Checking Compliance with MISRA C Coding Rules” on page 11-4
“Creating a MISRA C Rules File” on page 11-5
“Excluding Files from the MISRA C Checking” on page 11-7

“Configuring Text and XML Editors” on page 11-8

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

The Compliance with standards options appear.
2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and directories to ignore,
appear.

Setting Up MISRA C® Checking

Marne Walue Irternal harme

L halysiz options

eneral
Target.l‘C-:umpilatil:un
I.J—]—Ccumpliance with standards

—Code fraomm DO or Windows filesystemn 7 -olos
F-Embedded assembler
H-Strict r strict
Permizzive I -PErtissive
f—]—Check MISRA-C: 2004 rules v

—Fules configuration ... |-mizra2

—Files and directaries to ignore ... fincludes-to-ignore
FHeillAR suppart defaut =) dislect

F-PolySpace inner settings
reu:isiu:un.l’Su:aIing
urt'rtasking

4 Specify which MISRA C rules to check and which, if any, files to exclude
from the checking.

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

Opening a New Rules File
To open a new rules file:

1 Click the button I_l to the right of the Rules configuration option.
A window for opening or creating a MISRA C rules file appears.
2 Select File > New File.

A table of rules appears.

11-5

11 MISRA® Checker

11-6

Rules Errar I WNarning Off

MISEL C rules

I—Numl::ner af rules by mode 7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

4 Character sets

Identifiers

Types

I-' Constants

8 Declarstions and definitions

9 Intialization

0 Arithmetic type conversions

1 Painter type conversions

2 Exrezsions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l B Functions
—16.1 Functionz shall nat be defined with variable numbers of arguments. f" - o
—16.2 Functions shall nat call themselves, either directly or indirectly. f" - o
—16.3 ldentifiers shall he given for all of the parameters in & function prototy o - f"
—16.4 The identifiers used in the declarstion and defintion of 2 function shall © 8 =
—16.2 Functions wvith ho parameters shall be declared with parameter type f" f" o
—16.6 The number of arguments passed to a function shall match the numbe f" f" o
—I16.7 & pointer parameter in a function protatype should be declared as poi f" « g
—16.5 Al exit paths from a function with non-void return type shall have an ¢ r ':H o
—16.9 & function identifier shall only be used with either a preceding & or f" f" o
—1 G610 If & function returns error information, then that error information sha © © g

=T Pointer and arrays
—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs © © g
—17.2 Pointer subtraction shall only be applied to pointers that address elems © © g
—17.3 =, == = == shal not be applied to pointer types except where they po © © g
—17.4 Array indexing shall be the only allowed form of poirter arithmetic. f" o f"
—17.5 The declaration of objects should contain no more than 2 levels of poi f" f" o
—17 6 The address of an ohject with automstic storage shall not be azsigne r i "

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

Setting Up MISRA C® Checking

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and directories to ignore
option.

2 Click the folder icon.

=]

The Select a file or directory to include dialog box appears.

11-7

11 MISRA® Checker

11-8

3 Select the files or directories (such as include files) you want to ignore.
4 Click OK.
The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

Configuring Text and XML Editors

Before you check MISRA rules, you should configure your text and XML
editors in the Launcher. Configuring text and XML editors in the Launcher
allows you to view source files and MISRA reports directly from the MISRA-C

log in the launcher.
To configure your text and . XML editors:

1 Select Edit > Preferences.
The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

Setting Up MISRA C® Checking

x

Toolz henu I Remnte | auncher
Miscelaneais I Rezult directory | Default directory i

Generic targets

~HML editar configuration

Specify the full psth to a XML editor or use the brawse buttan.

WML Editar: IC:'I.F‘ngram Filez"M=0tficelDifice! XEXCEL EXE _)l

~Text editar configuration

Specify the full path to a text editor ar use the browese button.

Text Edlitor: IC:'I.F‘ru:ugram FilesWindows NTWCcessoriesweordpad exe _)l

Specify the command line arguments for the text editor,

Arguments: I

The fallowing macros can be uzed FFILE, 3LIMNE, FCOLLIMN

Ol Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports.
4 Specify a Text editor to use to view source files from the Launcher logs.

5 Click OK.

11-9

11 MISRA® Checker

Running a Verification with MISRA C Checking

In this section...

“Starting the Verification” on page 11-10
“Examining the MISRA C Log” on page 11-11
“Opening MISRA-C Report” on page 11-12

Starting the Verification

When you run a verification with the MISRA C option selected, the verification
checks most of the MISRA C rules during the compile phase.!?

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

1 Click the Start button ﬂl

2 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

If the verification fails because of MISRA C violations. A message dialog
box appears.

11. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-10

Running a Verification with MISRA C® Checking

P

@ Werification process Failed

3 Click OK.

Note If any of the input source files do not compile, MISRA C checking will
be incomplete.

Examining the MISRA C Log
To examine the MISRA C violations:

1 Click the MISRA-C button in the log area of the Launcher window.

A list of MISRA C violations appear in the log part of the window.

ERROE : rule 16.3 (required) wiolated. At @ C:\po!
| identifiers shall be giwven for all of the
WARNING : rule 17.4 (required) wiolated. AL @ exar
| array indexing shall be the only allowed
WABNING : rule 17.4 (required) wiolated. AL @ exal
| array indexing shall be the only allowed

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

11-11

11 MISRA® Checker

Dretail

Search; 44 I (13
incluce h 3
7.4 example.c a7]
7.4 example.c 114 1]
7.4 exarnple.c 115 1]

Bule: 16.35 (Error): Identifiers shall be giwven for all of the parameters in a

File: C:%“Poly3pacespolyspace_projectiincludestinclude.h line 33 [column 0)

Source code

In this example, the log reports a violation of rule 16.3. A function
prototype declaration in include.h is missing an identifier.

3 Right click

the row containing the violation, then select Open Source File.

Statuz | Rule File Lire Cal L_
?
17 .4 [V— %= Open Source File
17.4 e xamp Open MISRA-C Report
174 |examp wd Configure Edibar

The appropriate file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 11-8.

4 Correct the MISRA violation and run the verification again.

Opening

MISRA-C Report

After you check MISRA rules, you can generate an XML report containing all
the errors and warnings reported by the MISRA-C checker.

Note You must configure an XML editor before you can open a MISRA-C

report. See

‘Configuring Text and XML Editors” on page 11-8.

11-12

Running a Verification with MISRA C® Checking

To view the MISRA-C report:

1 Click the MISRA-C button in the log area of the Launcher window.
A list of MISRA C violations appear in the log part of the window.

2 Right click any row in the log, and select Open MISRA-C Report.

u

!

+ |74 Exarmp 4= Open Source File
EEE! EXAME Open MISRA-C Repaort
T jira examp o Configure Editor

The report opens in your XML editor.

(CD = Rl H Book2 - Microsoft Excel T =T E =X
Home Insert Page Layout Formulas Data Review View Add-Ins Acrobat Design '@] - =7 X
) = =]) || G=nset~ | E - % ﬁ
_j Calibri |@ | = Wrap Text General ij ?—ﬁ _I% T Delete -
Paste B I U- -3 Merge & Center § - 9 s /%0 ;09 Conditional Format Cell Sort & Find &
\’ | g JjE2 2 | | % 5| Formatting ~ as Table ~ Styles - ﬁlFormatv l' Filter - Select~
Clipboard ™= Font Alignment Mumber {F] Styles Cells Editing
Nameld Modeﬂ
16.3 required error C: \PonSpace\polyspaceJ)rolect\lncludes\lnclude h 33 0| Identlflers shall be given for all of the parameters in a function protc
17.4 required warning example.c 97 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 114 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 118

0 | Array indexing shall be the only allowed form of pointer arithmetic.

W 4 ¢ M| Sheetl ~ Sheet ~ Sheets ~ ¥1

[I
Ready

[EEEFT e =——0——0""

11-13

11 MISRA® Checker

Rules Supported

In this section...

“Language Extensions” on page 11-15
“Character Sets” on page 11-15

“Identifiers” on page 11-15

“Types” on page 11-17

“Constants” on page 11-17

“Declarations and Definitions” on page 11-18
“Initialization” on page 11-20

“Arithmetic Type Conversion” on page 11-20
“Pointer Type Conversion” on page 11-24
“Expressions” on page 11-25

“Control Statement Expressions” on page 11-28
“Control Flow” on page 11-29

“Switch Statements” on page 11-31
“Functions” on page 11-32

“Pointers and Arrays” on page 11-33
“Structures and Unions” on page 11-33
“Preprocessing Directives” on page 11-34
“Standard Libraries” on page 11-37

“runtime Failures” on page 11-39

11-14

Rules Supported

Language Extensions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
2.2 source code shall only use /* | C++ comments shall not be | C++ comments are handled
*/ style comments used. as comments but lead to a
violation of this MISRA rule
2.3 The character sequence /* | The character sequence /* | This rule violation is also
shall not be used within a shall not appear within a raised when the character
comment comment. sequence /* inside a C++
comment.
Character Sets
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
4.1 Only those escape sequences | \<character> is not an ISO
which are defined in the C escape sequence
ISO® C standard shall be Only those escape
used. sequences which are
defined in the ISO C
standard shall be used.
4.2 Trigraphs shall not be used. | Trigraphs shall not be used. | Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule
Identifiers
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
5.1 Identifiers (internal and Identifier "XX’ should not All identifiers (global, static

external) shall not rely on
the significance of more
than 31 characters

rely on the significance of
more than 31 characters.

and local) are checked.

11-15

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

5.2 Identifiers in an inner scope | ® Local declaration of XX is | Assumes that rule 8.1 is not
shall not use the same name hiding another identifier. | violated.
as an identifier in an outer .

. ¢ Declaration of parameter
scope, and therefore hide .1
that identifier. XX is hiding another
identifier.

5.3 A typedef name shall be a { typedef name }'%s’ should | Warning when a typedef

unique identifier not be reused. (already name is reused as another
used as { typedef name } at | identifier name.
%s:%d)

5.4 A tag name shall be a {tag name }'%s’ should not | warning when a tag name is

unique identifier be reused. (already used as | reused as another identifier
{tag name } at %s:%d) name

5.5 No object or function { static identifier/parameter | warning when a static
identifier with a static name }'%s’ should not be name is reused as another
storage duration should be | reused. (already used as { | identifier name
reused. static identifier/parameter

name } at %s:%d)

5.6 No identifier in one name {member name }'%s’ should | warning when a idf in a
space should have the same | not be reused. (already namespace is reused in
spelling as an identifier in | used as { member name } at | another namespace
another name space, with %s:%d)
the exception of structure
and union member names.

5.7 No identifier name should {identifier}'%s’ should not warning on other conflicts

be reused.

be reused. (already used as
{ identifier} at %s:%d)

(including member names)

11-16

Rules Supported

Types
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
6.1 The plain char type shall Only permissible operators | There is a warning when a
be used only for the storage | on plain chars are’=",’=="or | plain char is used with an
and use of character values | ’!'=" operators. operator other than =, == or
1=
6.3 typedefs that indicate size typedefs that indicate size | No warning is given in
and signedness should be and signedness should be typedef definition. There is
used 1n place of the basic used in place of the basic no exception on bitfields.
types types.
6.4 Bit fields shall only be Bit fields shall only be
defined to be of type defined to be of type
unsigned int or signed int. unsigned int or signed int.
6.5 Bit fields of type signed int | Bit fields of type signed int | No warning on anonymous
shall be at least 2 bits long. | shall be at least 2 bits long. | signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 1s violated).
Constants
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
7.1 Octal constants (other ® (QOctal constants other

than zero) and octal escape

sequences shall not be used.

than zero and octal
escape sequences shall
not be used.

® QOctal constants (other
than zero) should not be
used.

® (Qctal escape sequences
should not be used.

11-17

11 MISRA® Checker

Declarations and Definitions

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

8.1

Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

® Function XX has no
complete prototype
visible at call.

® Function XX has no
prototype visible at
definition.

Prototype visible at call
must be complete.

8.2

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.4

If objects or functions
are declared more than
once their types shall be
compatible.

e [f objects or functions
are declared more than
once their types shall be
compatible.

® Global declaration
of XX’ function has
incompatible type with
its definition.

® Global declaration
of XX’ variable has
incompatible type with
its definition.

During link phase, errors
are converted into warnings
with -permissive-1link
option.

Cannot be turned Off.

8.5

There shall be no definitions
of objects or functions in a
header file

¢ Object XX’ should not be
defined in a header file.

¢ Function XX’ should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

11-18

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
8.6 Functions shall always be Function XX’ should be
declared at file scope. declared at file scope.
8.9 Definition: An identifier Tentative of definitions
with external linkage shall | ® Procedure/Global are considered as
have exactly one external variable XX multiply definitions, No warning
definition. defined. on undefined objects with
e Forbidden multiple - RIS = RIPIAIELES
. . option, No warning on
tentative of definition for dofined bol
object XX predefined symbols.
® Global variable has
multiples tentative of
definitions
8.10 All declarations and Function/Variable XX Not checked if
definitions of objects or should have internal -main-generator option is
functions at file scope shall | linkage. set. Assumes that 8.1 is not
have internal linkage unless violated. No warning if 0
external linkage is required uses.
8.11 The static storage class static storage class specifier
specifier shall be used in should be used on internal
definitions and declarations | linkage symbol XX.
of objects and functions that
have internal linkage
8.12 When an array is declared | Array XX has unknown

with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

size.

11-19

11 MISRA® Checker

Initialization
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
9.1 All automatic variables Done by PolySpace (NIV
shall have been assigned a Checks).
value before being used. Cannot be Off.
9.2 Braces shall be used to Braces shall be used to
indicate and match the indicate and match the
structure in the nonzero structure in the nonzero
initialization of arrays and | initialization of arrays and
structures. structures.
9.3 In an enumerator list, the In an enumerator list, the
= construct shall not be = construct shall not be
used to explicitly initialize | used to explicitly initialize
members other than the members other than the
first, unless all items are first, unless all items are
explicitly initialized. explicitly initialized.
Arithmetic Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
10.1 The value of an expression

11-20

of integer type shall not be
implicitly converted to a
different underlying type if:

® it is not a conversion to a
wider integer type of the
same signedness, or

® the expression is complex,
or

® the expression is not
constant and is a function
argument, or

e Implicit conversion
of the expression of
underlying type ?? to
the type ?? that is not a
wider integer type of the
same signedness.

¢ Implicit conversion of one
of the binary operands
whose underlying types
are ?? and ??

e Implicit conversion of
the binary right hand

1 ANSI C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

2 An expression of bool or
enum types has int as
underlying type.

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
. operand of underlying
e cromsn 0t G 0 s | 3 Pl char oy v
. an integer type. signed or unsigned
éxpression o _ underlying type
¢ Implicit conversion of the (depending on PolySpace
binary left hand operand target configuration or
of underlying type ?? to option setting).
?? that is not an integer
type. 4 The underlying type
e Implicit conversion of of a simple? gxprgssion
the binary right hand of struct.bltfleld. is the
operand of underlying bgsg type used in the
type ?? to ?? that is not b?tf}eld de-f1n1t1.on, the
a wider integer type of bltfleld width is not .
the same signedness or token into account a.nd it
Implicit conversion of assumes that only signed
the binary ? left hand | un§18ned int are used
operand of underlying for bitfield (Rule 6.4).
type ?? to ??, but it is a
complex expression.
10.1 ¢ Implicit conversion
(cont.) of complex integer

expression of underlying
type ?? to ??.

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? in function return

whose expected type is
29

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? as argument
of function whose

11-21

11 MISRA® Checker

11-22

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
corresponding parameter
type is ??.
10.2 The value of an expression ANSI C base types order

of floating type shall not
be implicitly converted to a
different type if

® it is not a conversion to a
wider floating type, or

® the expression is complex,
or

® the expression is a
function argument, or

® the expression is a return
expression

e Implicit conversion of
the expression from ??
to ?? that is not a wider
floating type.

¢ Implicit conversion of
the binary ? right hand
operand from ?? to
??, but it is a complex
expression.

¢ Implicit conversion of
the binary ? right hand
operand from ?? to
?? that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from ??
to ??, but it is a complex
expression.

¢ Implicit conversion
of complex floating
expression from ?? to ??.

¢ Implicit conversion of
floating expression of ??
type in function return

whose expected type is
29

¢ Implicit conversion of
floating expression of
?? type as argument
of function whose

(float, double) defines that

T2 is wider than T1 if T2 is
on the right hand of T1 or

T2 =T1.

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
corresponding parameter
type is ??.
10.3 The value of a complex Complex expression of

expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

underlying type ?? may
only be cast to narrower
integer type of same
signedness, however the
destination type is ??.

e ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied
on the unsigned version
of base types.

® An expression of bool or
enum types has int as
underlying type.

¢ Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

¢ The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are
used for bitfield (Rule
6.4).

11-23

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
10.4 The value of a complex Complex expression of ?? ANSI C base types order
expression of float type may | type may only be cast to (float, double) defines that
only be cast to narrower narrower floating type, T1 is narrower than T2 if
floating type however the destination T2 is on the right hand of
type is ??. T1 or T2 = T1.
10.5 If the bitwise operator ~ and | Bitwise [<<|~] is applied
<< are applied to an operand | to the operand of
of underlying type unsigned | underlying type [unsigned
char or unsigned short, the | char|unsigned short], the
result shall be immediately | result shall be immediately
cast to the underlying type | cast to the underlying type.
of the operand
10.6 The “U” suffix shall be No explicit ‘U suffix on
applied to all constants of constants of an unsigned
unsigned types type.
Pointer Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
11.1 Conversion shall not be Conversion shall not be Casts and implicit
performed between a performed between a conversions involving a
pointer to a function and pointer to a function and function pointer
any type other than an any type other than an
integral type integral type.
11.2 Conversion shall not be Conversion shall not be There is also a warning on

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void.

qualifier loss

11-24

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
11.3 A cast should not be A cast should not be Exception on zero constant.
performed between a performed between a Extended to all conversions
pointer type and an integral | pointer type and an integral
type type.
11.4 A cast should not be A cast should not be Extended to all conversions
performed between a performed between a
pointer to object type and pointer to object type and a
a different pointer to object | different pointer to object
type. type.
11.5 A cast shall not be A cast shall not be Extended to all conversions
performed that removes performed that removes
any const or volatile any const or volatile
qualification from the qualification from the
type addressed by a pointer | type addressed by a pointer
Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.1 Limited dependence Limited dependence
should be placed on C’s should be placed on C’s
operator precedence rules operator precedence rules
in expressions in expressions
12.3 The sizeof operator should | he size of operator should No warning on volatile
not be used on expressions | not be used on expressions | accesses and function calls
that contain side effects. that contain side effects.
12.4 The right hand operand of | The right hand operand of | No warning on volatile

a logical && or | | operator
shall not contain side
effects.

a logical && or | | operator
shall not contain side
effects.

accesses and function calls.

11-25

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.5 The operands of a logical During preprocessing,
&& or || shall be ¢ operand of logical && is | violations of this rule are
primary-expressions. not a primary expression | detected on the expressions
o e of logreal [9 in #if directives.
not a primary expression | Allowed exception on
¢ The operands of a logical ?sslo I(:ll?tllvlelz (@a&&b &&c),
&& or | | shall be . ok
primary-expressions.
12.6 Operands of logical "the operand of a logical

operators (&&, | | and

1) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, | | or!).

® Operand of ’!" logical
operator should be
effectively Boolean. Left
operand of '%s’ logical
operator should be
effectively Boolean.

¢ Right operand of "%s’
logical operator should
be effectively Boolean.

® Boolean should not be
used as operands to
operators other than

’&&7, al |,OI' 7!a'

operator should be a
Boolean". As there are no
Boolean in "C" but as the
standard assumes it, some
operator return Boolean
like expression (var == 0).
Example:

unsigned char flag; if
(!flag) raises the rule:
the operand of "!" 1s "flag".
And "flag" is not a Boolean
but an unsigned char.

To be 12.6 MISRA
compliant, the code need to
be written like this:

if (!(flag != 0))
or if (flag == 0)

11-26

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.7 Bitwise operators shall The underlying type for
not be applied to operands | ® [~/Left Shift/Right an integer used in a
whose underlying type is shift/&] operator applied | re-processor expression is
signed on an expression whose | signed when :
underlying type is signed.
¢ Bitwise ~ on operand of 1 dc?es s e & o @ U
. . suffix
signed underlying type
?72. ® it is small enough to
e fit 1nk‘:0 a 64 bits signed
hand operand of signed number
underlying type ??.
* Bitwise [& | 7] on two
operands of s
12.8 The right hand operand of The numbers that

a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

¢ shift amount is negative

¢ shift amount is bigger
than 64

* Bitwise [<<>>] count out
of range [0 ..X] (width of
the underlying type ?? of
the left hand operand -
1)..

are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check 1s also extended
onto bitfields with the field
width or the width of the
base type when it is within
a complex expression

11-27

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.9 The unary minus operator The underlying type for
shall not be applied to ¢ Unary - on operand of an integer used in a
an expression whose unsigned underlying type | re-processor expression is
underlying type is unsigned. 7. signed when:

e Mi t lied .
R S ¢ it does not have auor U
to an expression whose .
. . suffix

underlying type is

unsigned ¢ it is small enough to
fit into a 64 bits signed
number

12.10 | The comma operator shall | The comma operator shall
not be used. not be used.

12.13 | The increment (++) and The increment (++) and warning when ++ or --
decrement (--) operators decrement (--) operators operators are not used
should not be mixed with should not be mixed with alone.
other operators in an other operators in an
expression expression

Control Statement Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
13.1 Assignment operators shall | Assignment operators shall

not be used in expressions
that yield Boolean values.

not be used in expressions
that yield Boolean values.

11-28

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
13.2 Tests of a value against zero | Tests of a value against zero | No warning is given on
should be made explicit, should be made explicit, integer constants. Example:
unless the operand is unless the operand is if (2)
effectively Boolean effectively Boolean
13.7 Boolean operations whose Boolean operator '%s’ Done by PolySpace (gray
results are invariant shall | should not have invariant Checks). It is also checked
not be permitted result. (Result is always during compilation on
‘true/false’). comparison between with a
least one constant operand.
Cannot be Off.
Control Flow
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.1 There shall be no Done by PolySpace (gray
unreachable code. checks).
Cannot be Off.
14.2 All non-null statements
shall either have at lest e All non-null statements
one side effect however shall either:
(fe]xem;ted},l or cause control e have at lest one side
ow to change effect however executed,
or
e cause control flow to
change
14.4 The goto statement shall The goto statement shall
not be used. not be used.
14.5 The continue statement The continue statement

shall not be used.

shall not be used.

11-29

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.6 For any iteration statement | For any iteration statement
there shall be at most one there shall be at most one
break statement used for break statement used for
loop termination loop termination
14.7 A function shall have a A function shall have a
single point of exit at the single point of exit at the
end of the function end of the function
14.8 The statement forming the
body of a switch, while, do ¢ The body of a do while
while or for statement shall statement shall be a
be a compound statement compound statement.
¢ The body of a for
statement shall be a
compound statement.
¢ The body of a switch
statement shall be a
compound statement
14.9 An if (expression) construct
shall be followed by a ¢ An if (expression)
compound statement. construct shall be
The else keyword shall followed by a compound
be followed by either a statement.
comtp}f) un.(; S;E attemeng: » or ® The else keyword shall
another iy statemen be followed by either a
compound statement, or
another if statement
14.10 | All if else if constructs All if else if constructs

should contain a final else
clause.

should contain a final else
clause.

11-30

Rules Supported

Switch Statements

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
15.0 Unreachable code is switch statements syntax Warning on declarations or
detected between switch normative restrictions. any statements before the
statement and first case. first switch case.
Warning on label or jump
Note this is not a MISRA statements in the body of
C2004 rule. ’
On the following example,
the rule is displayed in the
log file at line 3:
1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4 case 1:
The code between switch
statement and first case
is checked as gray by
PolySpace verification. It
follows ANSI standard
behavior.
15.1 A switch label shall only A switch label shall only
be used when the most be used when the most
closely-enclosing compound | closely-enclosing compound
statement 1is the body of a statement is the body of a
switch statement switch statement
15.2 An unconditional break An unconditional break

statement shall terminate
every non-empty switch
clause

statement shall terminate
every non-empty switch
clause

11-31

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

15.3 The final clause of a switch | The final clause of a switch
statement shall be the statement shall be the
default clause default clause

15.4 A switch expression should | A switch expression should
not represent a value that | not represent a value that
is effectively Boolean is effectively Boolean

15.5 Every switch statement Every switch statement
shall have at least one case | shall have at least one case
clause clause

Functions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.1 Functions shall not be Function XX should not be
defined with variable defined as varargs.
numbers of arguments.

16.2 Functions shall not call Function %s should not call | Done by PolySpace software
themselves, either directly | itself. (Call graph in the viewer
or indirectly. gives the information).

PolySpace verification also
checks that partially during
compilation phase.

Cannot be Off.

16.3 Identifiers shall be given Identifiers shall be given Assumes Rule 8.6 is not
for all of the parameters for all of the parameters violated.
in a function prototype in a function prototype
declaration. declaration.

16.4 The identifiers used in the | The identifiers used in the | Assumes that rules 8.8,

declaration and definition of
a function shall be identical.

declaration and definition of
a function shall be identical.

8.1 and 16.3 are not
violated. All occurrences
are detected.

11-32

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.5 Functions with no Functions with no Definitions are also
parameters shall be parameters shall be checked.
declared with parameter declared with parameter
type void. type void.

16.8 All exit paths from a Missing return value for Warning when a non-void
function with non-void non-void function XX. function is not terminated
return type shall have an with an unconditional
explicit return statement return with an expression.
with an expression.

16.9 A function identifier shall Function identifier XX
only be used with either should be preceded by a &

a preceding &, or with a or followed by a parameter
parenthesized parameter list.
list, which may be empty.
Pointers and Arrays
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

17.5 A type should not contain A type should not contain
more than 2 levels of pointer | more than 2 levels of pointer
indirection indirection

Structures and Unions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

18.1 All structure or union types | All structure or union types
shall be complete at the end | shall be complete at the end
of a translation unit. of a translation unit.

18.4 Unions shall not be used Unions shall not be used.

11-33

11 MISRA® Checker

Preprocessing Directives

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.1 #include statements in a A message is displayed
file shall only be preceded | when a #include directive
by other preprocessors is preceded by other
directives or comments things than preprocessor
directives, comments,
spaces or “new lines”.
19.2 Nonstandard characters
should not occur in header | ® A message is displayed
file names in #include on characters’, \, " or
directives /* between < and > in
#include <filename>
* A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"
19.3 The #include directive shall Cannot be Off.
be followed by either a ® ‘“#include’ expects
<filename> or "filename" "FILENAME" or
sequence. <FILENAME>
e ‘“Hinclude_next’ expects
"FILENAME" or
<FILENAME>
19.5 Macros shall not be #defined
and #undefd within a block. | ® Macros shall not be
#defined within a block.
® Macros shall not be
#undefd within a block.
19.6 #undef shall not be used. #undef shall not be used.

11-34

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.7 A function should be used | Message on all function-like
in preference to a function | macros expansions
like-macro.
19.8 A function-like macro shall Cannot be Off.
not be invoked without all ® arguments given to
of its arguments macro ‘<name>’
® macro ‘<name>" used
without args.
® macro ‘<name>" used
with just one arg.
® macro ‘<name>
used with too many
(<number>) args.
19.9 Arguments to a Macro argument shall not This rule is detected as
function-like macro shall look like a preprocessing violated when the #
not contain tokens that directive. character appears in a
look like preprocessing macro argument (outside
directives. a string or character
constant)
19.10 | In the definition of a Parameter instance shall be
function-like macro each enclosed in parentheses.
Instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
#.
19.11 | All macro identifiers in ‘<name>’ is not defined.

preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

11-35

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.12 | There shall be at most one | More than one occurrence
occurrence of the # or ## of the # or ## preprocessor
preprocessor operators in a | operators.
single macro definition.
19.13 | The # and ## preprocessor | Message on definitions
operators should not be of macros using # or ##
used operators
19.14 | The defined preprocessor ‘defined’ without an Cannot be Off.
operator shall only be used | identifier.
in one of the two standard
forms.
19.16 | Preprocessing directives directive is not syntactically
shall be syntactically meaningful.
meaningful even
when excluded by the
preprocessor.
19.17 | All #else, #elif and #endif Cannot be Off.

preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

e ‘Helif’ not within a
conditional.

e ‘Helse’ not within a
conditional.

e ‘Helif’ not within a
conditional.

e ‘#endif not within a
conditional.

e unbalanced #endif’.

® unterminated #if’
conditional.

* unterminated #ifdef’
conditional.

* unterminated #ifndef’
conditional.

11-36

Rules Supported

Standard Libraries

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.1 Reserved identifiers,
macros and functions in ® The macro ‘<name> shall
the standard library, shall not be redefined.
noz1 b; deglned, redefined or | The macro ‘<name> shall
undelined. not be undefined.

20.2 The names of standard Identifier XX should not be | In case a macro whose name
library macros, objects used. corresponds to a standard
and functions shall not be library macro, object or
reused. function is defined, the

rule that is detected as
violated i1s 20.1. Tentative
of definitions are considered
as definitions.

20.4 Dynamic heap memory In case the dynamic heap
allocation shall not be used. | ® The macro ‘<name> shall | memory allocation functions

not be used. are actually macros and the
e Identifier XX should not | ™acro 1s expanded in the
be used code, this rule is detected as
) violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno The error indicator errno Assumes that rule 20.2 is
shall not be used shall not be used not violated

20.6 The macro offsetof, in Assumes that rule 20.2 is

library <stddef.h>, shall not
be used.

¢ The macro ‘<name> shall
not be used.

e Jdentifier XX should not
be used.

not violated

11-37

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.7 The setjmp macro and the In case the longjmp function
longjmp function shall not | ® The macro ‘<name> shall | is actually a macro and the
be used. not be used. macro is expanded in the
e Tdentifier XX should not code, this rule is detected as
be used violated. Assumes that rule
’ 20.2 is not violated
20.8 The signal handling In case some of the signal
facilities of <signal.h> ¢ The macro ‘<name> shall | functions are actually
shall not be used. not be used. macros and are expanded
e Identifier XX should not | ' the code, thl?’ sty
be used is detected as violated.
’ Assumes that rule 20.2 is
not violated
20.9 The input/output library In case the input/output
<stdio.h> shall not be used | ® The macro ‘<name> shall | library functions are
in production code. not be used. actually macros and are
¢ Identifier XX should not expapded i {513 cod.e, s
be used rule is detected as violated.
) Assumes that rule 20.2 is
not violated
20.10 | The library functions atof, In case the atof, atoi and

atoi and toll from library
<stdlib.h> shall not be used.

¢ The macro ‘<name> shall
not be used.

e Jdentifier XX should not
be used.

atoll functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

11-38

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.11 | The library functions abort, In case the abort, exit,
exit, getenv and system ® The macro ‘<name> shall | getenv and system functions
from library <stdlib.h> not be used. are actually macros and

shall not be used. e Identifier XX should not | &r¢ expanded, this rule

is detected as violated.

b d. .
© use Assumes that rule 20.2 is
not violated
20.12 | The time handling functions In case the time handling
of library <time.h> shall not | ® The macro ‘<name> shall | functions are actually
be used. not be used. macros and are expanded,

O Tialera fer ST ahaulal e thls rule is detected as
be used. violated. Assumes that rule

20.2 is not violated

runtime Failures

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
21.1 Minimization of runtime Done by PolySpace (runtime
failures shall be ensured by error checks).
the use of at least one of: Cannot be Off.

e gstatic verification
tools/techniques;

¢ dynamic verification
tools/techniques;

e explicit coding of checks
to handle runtime faults.

11-39

11 MISRA® Checker

Rules Partially Supported

In this section...

“Environment” on page 11-40

“Language Extension” on page 11-41
“Declarations and Definitions” on page 11-42
“Expressions” on page 11-43

“Control Statement Expressions” on page 11-44
“Control Flow” on page 11-46

“Functions” on page 11-47

“Pointers and Arrays” on page 11-47

“Preprocessing Directives” on page 11-48

Environment
Rule Description
1.1 All code shall conform to ISO 9899:1990 “Programming

(Required) languages - C”, amended and corrected by ISO/IEC
9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

Messages in log:

e ANSI C does not allow #include_next’

¢ ANSI C does not allow macros with variable arguments list
e ANSI C does not allow #assert’

e ANSI C does not allow#unassert’

¢ ANSI C does not allow testing assertions

e ANSI C does not allow #ident’

e ANSI C does not allow #sccs’

¢ text following #else’ violates ANSI standard.

11-40

Rules Partially Supported

Description

text following #endif’ violates ANSI standard.

¢ text following #else’ or #endif violates ANSI standard.
e ANSI C90 forbids ’long long int’ type.
e ANSI C90 forbids 'long double’ type.

e ANSI C90 forbids long long integer constants.

¢ Keyword ’inline’ should not be used.

e Array of zero size should not be used.

¢ Integer constant does not fit within unsigned long int.

¢ Integer constant does not fit within long int.

Note All the supported extensions lead to a violation of this MISRA rule.
Standard compilation error messages do not lead to a violation of this
MISRA rule and remain unchanged. Can be turned to Off (see -misra2

option).

Language Extension

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
(Required)

11-41

11 MISRA® Checker

Rule Description

Message in log:

* Assembly language shall be encapsulated and isolated.

Note no warnings if code is encapsulated in asm functions or in asm
pragma (only warning is given on asm statements even if it is encapsulated
by a MACRO). Can be turned to Off.

Declarations and Definitions

Rule Description

8.3 For each function parameter the type given in the

(Required) declaration and definition shall be identical, and the return
types shall also be identical.

Message in log:

¢ Definition of function XX’ incompatible with its declaration.

Note Assumes that rule 8.1 is not violated. The rule is restricted to
compatible types. Can be turned to Off

8.7 Objects shall be defined at block scope if they are only
(Required) accessed from within a single function

Message in log:

¢ Object XX’ should be declared at block scope.

Note Restricted to static objects. Can be turned to Off

11-42

Rules Partially Supported

Rule Description

8.8 An external object or function shall be declared in one file
(Required) and only one file

Message in log:
¢ Function/Object 'XX’ has external declarations in multiples files.

Note Restricted to explicit extern declarations (tentative of definitions
are ignored). Can be turned to Off

Expressions
Rule Description
12.2 The value of an expression shall be the same under any
(Required) order of evaluation that the standard permits.

Messages in log:

® The value of ‘sym’ depends on the order of evaluation.

® The value of volatile ‘sym’ depends on the order of evaluation because
of multiple accesses.

Note The expression is a simple expression of symbols (Unlike 1 = i++;
no detection on tab[2] = tab[2]++;). Rule 12.2 check assumes that no
assignment in expressions that yield a Boolean values (rule 13.1) and the
comma operator is not used (rule 12.10). Can be turned to Off.

12.11 Evaluation of constant unsigned expression should not lead
(Advisory) to wraparound.

No message.

11-43

11 MISRA® Checker

Rule Description

Note This rule is partially implemented with the
-detect-unsigned-overflows option in PolySpace software. Concerning
possible preprocessing overflows, PolySpace preprocessor does not take
into account target basic types and considers always 32-Bit long int.
Cannot be ticked.

12.12 The underlying bit representations of floating-point values
(Required) shall not be used.

Message in log:
¢ The underlying bit representations of floating-point values shall not
be used.

Note Warning on casts with float pointers (excepted with void *). Can
be turned to Off.

Control Statement Expressions

Rule Description

13.3 Floating-point expressions shall not be tested for equality
(Required) or inequality.

Message in log:

¢ Floating-point expressions shall not be tested for equality or inequality.

Note Warning on directs tests only. Can be turned to Off.

13.4 The controlling expression of a for statement shall not
(Required) contain any objects of floating type

11-44

Rules Partially Supported

Description

Message in log:

® The controlling expression of a for statement shall not contain any
objects of floating type

Note If for index is a variable symbol, checked that it is not a float. Can
be turned to Off.

13.5
(Required)

The three expressions of a for statement shall be concerned
only with loop control

Messages in log:
® 1st expression should be an assignment.

Bad type for

loop counter (XX).

® 2nd expression should be a comparison.

® 2nd expression should be a comparison with loop counter (XX).

3rd expression should be an assignment of loop counter (XX).

3rd expression: assigned variable should be the loop counter (XX).

Note Checked

if the for loop index (V) is a variable symbol; checked if V is

the last assigned variable in the first expression (if present). Checked if, in

first expression, if present, is assignment of V; checked if in 2nd expression,

if present, must be a comparison of V; Checked if in 3rd expression, if
present, must be an assignment of V. Can be turned to Off.

13.6
(Required)

Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop.

11-45

11 MISRA® Checker

Rule Description

Message in log:
® Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

Note Detect only direct assignments if the for loop index is known and
if it is a variable symbol. Can be turned to Off.

Control Flow

Rule Description
14.3 All non-null statements shall either
(Required)

® have at lest one side effect however executed, or

¢ cause control flow to change

Message in log:

® A null statement shall appear on a line by itself

Note We assume that a’;’ is a null statement when it is the first character
on a line (excluding comments). The rule is violated when:

® there are some comments before it on the same line.
® there is a comment immediately after it

® there is something else than a comment after the ’;’ on the same line.

Can be turned to Off.

11-46

Rules Partially Supported

Functions
Rule Description
16.6 The number of arguments passed to a function shall match
Required) the number of parameters.

Messages in log:
® Too many arguments to XX.

¢ Insufficient number of arguments to XX.

Note Assumes that rule 8.1 is not violated. Can be turned to Off.

Pointers and Arrays

Rule Description

17.4 Array indexing shall be the only allowed form of pointer
(Required) arithmetic.

Message in log:

¢ Array indexing shall be the only allowed form of pointer arithmetic.

Note Warning on operations on pointers. (p+I, I+p and p-I, where p is a
pointer and I an integer). Can be turned to Off.

17.6 The address of an object with automatic storage shall not be
(Required) assigned to an object that may persist after the object has
ceased to exist.

11-47

11 MISRA® Checker

Rule Description

Message in log:
® Pointer to a parameter is an illegal return value. Pointer to a local is an
illegal return value.

Note Warning when returning a local variable address or a parameter
address. Can be turned to Off.

Preprocessing Directives

Rule Description

19.4 C macros shall only expand to a braced initializer, a

(Required) constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct.

Message in log:

® Macro ‘<name>" does not expand to a compliant construct.

11-48

Rules Partially Supported

Rule Description

Note We assume that a macro definition does not violate this rule when it
expands to:

® a braced construct (not necessarily an initializer)

® a parenthesized construct (not necessarily an expression)

® a number

® a character constant

® a string constant (can be the result of the concatenation of string field
arguments and literal strings)

¢ the following keywords: typedef, extern, static, auto, register, const,
volatile, _ asm__ and _ inline__

a do-while-zero construct

Can be turned to Off.

19.15 Precautions shall be taken in order to prevent the contents
(Required) of a header file being included twice.

11-49

11 MISRA® Checker

11-50

Rule Description

Message in log:
® Precautions shall be taken in order to prevent multiple inclusions.

Note When a header file is formatted as follows:

#ifndef <control macro>
#define <control macro>
<contents>

#endif

It is assumed that precautions have been taken to prevent multiple
inclusions. Otherwise, a violation of this MISRA rule is detected.

Can be turned to Off.

Rules Not Checked

Rules Not Checked

In this section...

“Environment” on page 11-51
“Language Extensions” on page 11-52
“Documentation” on page 11-52
“Types” on page 11-53

“Functions” on page 11-54

“Pointers and Arrays” on page 11-54
“Structures and Unions” on page 11-55

“Standard Libraries” on page 11-55

Environment
Rule Description Comments
1.2 No reliance shall be placed Not statically checkable
(Required) | on undefined or unspecified unless the data dynamic
behavior properties is taken into
account
1.3 Multiple compilers and/or It is a process rule method.
(Required) | languages shall only be

used if there is a common
defined interface standard

for object code to which the
language/compilers/assemblers

conform.

11-51

11 MISRA® Checker

Description

Comments

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

Language Extensions

Rule Description Comments

2.4 Sections of code should not be | It might be some pseudo code

(Advisory) | “commented out” or code that does not compile

inside a comment.

Documentation

Rule Description Comments

3.1 All usage of The documentation of

(Required) | implementation-defined compiler must be checked.

11-52

behavior shall be documented.

Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.

Rules Not Checked

Rule Description Comments
Documentation can not
be checked.

3.2 The character set and the The documentation of

(Required) | corresponding encoding shall | compiler must be checked.

be documented.

3.3 The implementation of The documentation of

(Advisory) | integer division in the compiler must be checked.

chosen compiler should